Mercury A to Z: X-Class Solar Flares

Hello, friends!  For this year’s A to Z Challenge, my theme is the planet Mercury, and in today’s post, X is for:


X was the hardest letter to find for this A to Z series.  For a while, I thought I was going to have to do something like “eXtreme temperatures on Mercury,” or maybe “eXoplanets like Mercury.”  There is a crater on Mercury named Xiao Zhao, which could have worked, but we’ve talked about so many craters already.  That seemed boring.  Then, just as I was wrapping up my research, I stumbled upon a paper titled “Modeling the Impact of a Strong X-Class Solar Flare on the Planetary Ion Composition in Mercury’s Magnetosphere.”  I have never in my life been so excited by the title of a scientific paper.

Scientists have come up with something like a Richter scale for solar flares.  The smallest, least energetic flares are called A-class solar flares.  B-class flares are ten times stronger than A-class.  C-class flares are ten times stronger than B-class.  Then, confusingly, we get M-class flares (ten times stronger than C-class) followed by X-class flares (at least ten times stronger than M-class).

Here’s how I rationalize this A-B-C-M-X system.  A, B, and C-class flares are low level flares that are too weak to affect us here on Earth.  We Earthlings can basically ignore them.  The M in M-class flare probably stands for medium. We do need to worry about these medium level flares.  If an M-class flare were aimed directly at Earth, it could damage our satellites, endanger astronauts on the International Space Station, and scramble some forms of radio communications here on Earth.  On th upside, these medium-level flares can also trigger geomagnetic storms around Earth’s poles (a.k.a. auroras).

And X-class flares are eXtreme!  If an X-class flare hit Earth, it could overwhelm our planet’s magnetic field.  Potentially, it could overload our power grids, cause worldwide communications blackouts, and basically wreck the global economy, at least for a few days.  The auroras would be truly impressive, though, possibly extending all the way to Earth’s equator.  So we’d at least be able to enjoy that while waiting for the world’s banking computers to reboot.

Scientists have a pretty good understanding of how solar flares affect Earth.  They’ve also had opportunities to see up close what powerful solar flares do to Mars, Jupiter, and Saturn.  But what about Mercury?  You’d think solar flares would be a pretty big deal on the planet closest to the Sun, but according to the paper I read, we don’t know much about how solar flares affect Mercury.  That’s surprising at first, but it makes sense when you consider how much time and energy (and money) we’ve spent exploring those other planets I mentioned compared to how little we’ve spent thus far exploring Mercury.

Solar flares don’t happen all at once; they occur in phases.  According to the paper I read, when an X-class solar flare hits Mercury, we can expect different elements of Mercury’s exosphere to ionize during different phases of the flare.  Magnesium would ionize right away, during the impulsive phase.  Other elements, like oxygen and helium, would ionize later, during what’s called the gradual phase (also known as the decay phase).  And some elements, most notably sodium, might not be affected at all.

Hopefully more research on this will come soon.  Maybe the BepiColombo Mission will be lucky enough to observe Mercury up close during an M-class or X-class solar flare (I presume BepiColombo is designed to protect itself from that kind of thing).


Here’s the paper I referenced in today’s post.

And here’s a brief article from one of NASA’s education/outreach websites explaining the solar flare classification system.

And here’s another article from NASA that briefly discusses the different phases of a solar flare.

8 thoughts on “Mercury A to Z: X-Class Solar Flares

  1. Jumping around the alphabet when each subsequent class is ten times more powerful than the last is quite confusing. Though to be fair, when using letters as a grading system for school, compared to how we use letters to indicate battery size and strength can be pretty weird too. We also have tier list as well.

    If this were a report card “M” could stand for miss, and “X” for excused or exempt. If this were a tier list, an “S” or “SS” could be the strongest types of flairs. Now I am thinking about a YouTube video where someone goes through the history books to present a tier list of their favorite solar flairs.

    Liked by 1 person

    1. There’s a quite a history there to go through. I think I know which solar flare I’d pick for the #1 spot.

      As for classification systems, you should see the system they use for classifying stars. For smallest to largest, main sequence stars start with M, then K, G, F, A, B, and O.


  2. It sure is a good thing scientists like to give things cool names like “X-ray” or “X-class” or alphabetical lists would be impossible

    Liked by 1 person

    1. I didn’t know this when I wrote this post, but apparently we got hit by one just last month. It caused temporary radio blackouts in southeast Asia, Australia, and New Zealand.

      Sounds like that flare just barely qualified as X-class, though, so I guess we got lucky.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.