Are We Alone in the Universe?

Hello, friends!

I have only recently returned to regular blogging, and in several recent posts I’ve alluded to the fact that I’m planning to take my Sci-Fi writing in a new creative direction.  A lot of things are changing for me right now.  A lot of the things I’m doing (or trying to do) are new.  With that in mind, I feel like this is a good time to restate some of my views and beliefs about science and the universe, starting with my views and beliefs about extraterrestrial life.

When people ask “Do you think we’re alone in the universe?” I get slightly annoyed by that question.  It’s too big a topic to reduce to a simple yes or no question.  In Humanity’s search for extraterrestrial life, there are really three kinds of life we might find out there:

Microbial Life: Almost as soon as Earth existed, terrestrial microorganisms existed, too.  Microbes developed so swiftly and so easily on this planet that the same thing must have happened elsewhere.  For this reason, I believe extraterrestrial microorganisms are plentiful across the cosmos.

Multicellular Life: Complex multicellular organisms—fish, plants, bugs, etc—exist on Earth due to a happy accident.  About 2.4 billion years ago, some of Earth’s microbes started burping up oxygen.  To those microbes, oxygen was a waste product, but that waste product could also be used in biochemical reactions to create energy.  Lots of energy.  Enough energy to make complex multicellular life possible.  If multicellular life requires this sort of happy accident in order to exist, then I suspect multicellular life must be rare across the universe.

Intelligent Life: I’m going to define intelligence as the ability of a species to make and use tools, to communicate complex ideas, and to generally improve upon its knowledge and technology over time.  As far as we can tell, life like that only evolved one time on our planet.  Given the vastness of the entire universe, I think intelligent life must exist elsewhere, but I also think it must be extremely rare.

Some time around 1950, nuclear physicist Enrico Fermi famously asked “Where is everybody?” in reference to alien life.  As Fermi saw it, advanced alien civilizations should be out there, and their activities in space should be obvious to us.  And yet when we look out into the universe, we see nothing.  This apparent contradiction—aliens should be everywhere, and yet they seem to be nowhere—is today known as the Fermi Paradox.

So I guess my answer to questions like “Where is everybody?” or “Are we alone in the universe?” depends on what kind of alien life we’re talking about.  If we’re talking about alien microorganisms, I think they’re plentiful, and I think it’s only a matter of time before we find evidence of alien microbes on Mars or on one of the icy moons of the outer Solar System.  If we’re talking about multicellular life, that sort of life is rare.  And intelligent life must be rarer still—so rare, in fact, that our nearest intelligent neighbors may be hundreds, thousands, or even millions of lightyears away.

But these are just my opinions.  My opinions about this topic have changed over time, and as I keep learning, my opinions and expectations will, no doubt, change again.

So, friends, what are your opinions and expectations concerning extraterrestrial life?  Do you think I’m on the right track, or is there something I’ve missed that you think I should learn more about?

Sciency Words: Barycenter

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we talk about those super weird (but super cool) words scientists like to use.  Today’s Sciency Word is:

BARYCENTER

Tell me if you’ve heard this one: every action has an equal and opposite reaction.  This is true even for moons orbiting planets, or planets orbiting stars.  Whenever a star exerts gravitational force on a planet, that planet exerts an equal and opposite gravitational force on the star.  As a result of this ongoing gravitational tug-of-war, we end up with a planet and a star spinning round and round their common center of mass, a point which scientists call a barycenter.

Definition of barycenter: In astronomy, a barycenter is the center of mass of two or more objects in space that are gravitationally bound together.  

Etymology of barycenter: The word barycenter traces back to a Greek word meaning “weighty” or “heavy.”  The word barometer has a related etymology (barometers measure atmospheric pressure—the “weight” of the atmosphere, in other words).

Sometimes a barycenter will be located deep inside the more massive of two celestial bodies, in which case the more massive body will appear to wobble in place.  This is the case for the Earth and the Moon.  The Earth-Moon barycenter is approximately 1700 km beneath Earth’s surface.  Other times, the barycenter will be somewhere in the empty space between objects.  For an example, look at Pluto and its largest moon, Charon.  The Pluto-Charon barycenter is more than 900 km above the surface of Pluto.

The concept of a barycenter dates back to Isaac Newton (though I can’t find any sources saying he coined the word, nor could I find any evidence that he ever used the word himself).  Newton’s Principia Mathematica, originally published in 1687, briefly discusses the Sun-Jupiter barycenter, saying, “[…] the common centre of gravity of Jupiter and the sun will fall upon a point a little without the surface of the sun.”  Newton also discusses the Sun-Saturn barycenter, which he describes as “[…] a point a little within the surface of the sun.”

And then there’s the barycenter of the Solar System as a whole: the “common centre of gravity of all the planets,” as Newton calls it.  Due to the combined gravitational forces of all the planets (most especially that of the giant planets: Jupiter, Saturn, Uranus, and Neptune), the Sun is constantly being pulled in multiple directions at once.

As a result, the Sun does not sit still in the middle of our Solar System.  It is “agitated by perpetual motion,” to quote Newton one last time.  Sometimes, as the Sun moves about, it happens to pass through the Solar System’s barycenter. Other times, it loops and spirals around the barycenter, as if performing an elaborate dance.

WANT TO LEARN MORE?

Here are a few articles that go into a little more detail about barycenters:

And here’s a link to the translation of Newton’s Principia Mathematica that I quoted in this post.  The relevant section is titled “Proposition XII.  Theorem XII.”

NASA’s DART Mission: Rest in Peace

Hello, friends!

As you probably know, NASA’s DART spacecraft deliberately rammed itself into an asteroid on Monday.  This was a test.  It was only a test.  The asteroid in question (named Dimorphos) was never a threat to us.  Someday, though, another asteroid may come along… an asteroid that does threaten us… an asteroid that could end life as we know it.  The DART Mission was intended to test out ability to defend ourselves, should a large and genuinely threatening asteroid ever show up on our doorstep.

I spent Monday night watching NASA TV’s livestream of the DART Mission.  Those final images from DART’s navigational camera were amazing!  I never really thought about what it would look like to crash into the surface of an asteroid.  Now I know exactly what that would look like.

Anyway, today I thought I’d share a few things that I learned—things that I did not know before—while watching NASA’s livestream, as well as the press conference that was held after the mission was over.

The Space Force: So I knew DART launched almost a year ago, but I didn’t know it had launched from Vandenberg Space Force Base (I also didn’t know Vandenberg Air Force Base had been renamed).  I still think the whole Space Force thing is cringy, but at least the Space Force did help do something to actually defend our planet.  So that’s cool!
DART’s Solar Panels: In addition to testing our planetary defense capabilities, the DART spacecraft also tested a few new space technologies.  Most notably, DART was using a new, experimental solar panel design.  DART launched with its solar panels rolled up into cylinders, then the solar panels unrolled once the spacecraft was in space.  The new design apparently weighs a lot less than traditional solar panels, and anything we can do to lower the weight of a spacecraft helps make spaceflight less expensive.
Dimorphos’s Shape: This one really surprised me.  Apparently nobody knew what Dimorphos looked like until those last few minutes before impact.  The most high-res images we had were still not high-res enough to reveal the asteroid’s shape or any useful details about its appearance.  As a result, DART had to be programmed with some sort of machine learning algorithm to help it figure out what it was supposed to be aiming for.

While the DART Mission was a success, it’ll still be a while before we know exactly how effective it was at moving the orbit of an asteroid.  Telescopes up in space and down here on the ground will continue monitoring Dimorphos as the dust settles (both figuratively and literally).  Still, as a citizen of Planet Earth, I do feel a little bit safer living on this planet.  I mean, we still have a lot of challenges we need to overcome, but that asteroid problem?  I think we’ve got that one covered now.

So did you watch NASA’s livestream on Monday?  Did you learn anything new, either from the livestream or from other news sources covering the DART Mission?

P.S.: If you missed the livestream, click here to watch it on YouTube.  Or you can click here to watch the press conference that was held afterward.

Sciency Words: The YORP Effect

Hello, friends!  Welcome to another episode of Sciency Words, a special series here on Planet Pailly where we talk about the definitions and etymologies of scientific terms.  In today’s episode, we’re talking about:

THE YORP EFFECT

Picture a windmill.  As the wind gets stronger or weaker, the windmill spins faster or slower, right?  Okay.  Now replace the windmill with an asteroid orbiting the Sun, and replace the wind with sunlight.  Over long periods of time, sunlight can make the asteroid spin faster or slower.  Sunlight can also change an asteroid’s axis of rotation.  This is known as the YORP Effect (not to be confused with the Yarkovsky Effect).

Definition of the YORP Effect: In astrophysics, the YORP effect is what happens when reflected and/or absorbed sunlight generates “thermal torque” on an asteroid.  Reflected sunlight exerts a very small (but non-zero) amount of force on the surface of an asteroid.  Absorbed sunlight radiates away from the surface of an asteroid as heat, exerting an additional small (but non-zero) amount of force.  Due to the irregular shapes and material consistencies of asteroids, it’s hard to predict exactly what this thermal torque will do, but over long enough periods of time it can dramatically change an asteroid’s rotation rate and axis of rotation.

Etymology of the YORP Effect: The term was coined in 1999 by American geophysicist David Rubincam.  The YORP Effect, as we currently know it, combines the previous research of Ivan Yarkovsky, John O’Keefe, Vladimir Radzievskii, and Stephen Paddack.  YORP is therefore an acronym of the names Yarkovsky, O’Keefe, Radzievskii, and Paddack.

This all started with Ivan Yarkovsky and his Yarkovsky Effect, which we talked about in last week’s Sciency Words post.  The Yarkovsky Effect has to do with the way sunlight affects the orbital trajectory of an asteroid.  The Yarkovsky Effect was lost to science for a while, then it was reintroduced in 1951.  Shortly after that reintroduction, other scientists started wondering what other effects sunlight might have on an asteroid, which ultimately led to this idea of a thermal torque effect, which we now call the YORP Effect.

To be clear, the Yarkovsky Effect and the YORP Effect are two different effects—one related to an asteroid’s orbital trajectory, the other to an asteroid’s rotation rate and axis of rotation.  They’re caused by the same thing—sunlight—but they are two different effects.

In 2007, observations of an asteroid named 2000 PH5 helped confirm that the YORP Effect is real.  The asteroid had been monitored closely over the course of about four years, and astronomers found that its rotation rate was steadily increasing.  This increase could not be explained by gravitational interactions alone, nor by collisions with other asteroids or any other known effects.  Therefore, by process of elimination, only the YORP effect was left as a possible explanation.  Asteroid 2000 PH5 was subsequently renamed 54509 YORP to honor its help in confirming the YORP Effect.

And in 2013, an asteroid named P/2013 R3 literally YORP-ed itself apart.  The YORP Effect caused the asteroid to spin so fast that it started flinging chunks of itself away.  There may have been some previous collision or other catastrophic event that made P/2013 R3 more fragile; still, in the end, it was the YORP Effect that caused the final destruction of that asteroid.

So if you’re an asteroid flying around in space, be careful.  It may be fun YORP-ing and Yarkovsky-ing around the Solar System, but you don’t want to Yarkovsky yourself into hitting a planet, and you don’t want to YORP yourself into self-disintegration either.

WANT TO LEARN MORE?

P.S.: The DART Mission is scheduled to crash itself into an asteroid tonight at 7:14 p.m. East Coast time in the U.S. (also known as 23:14 GMT).  If you’re interested, NASA TV will be live streaming the collision on their YouTube Channel.  It would not surprise me if the Yarkovsky and YORP Effects are mentioned as part of NASA TV’s science commentary.

NASA’s DART Mission: Brace for Impact!!!

Hello, friends!

We are only a few days away from what is, in my opinion, the #1 most important space story of the year.  No, I’m not talking about the launch of Artemis 1.  And no, this has nothing to do with the Webb Telescope either.  I’m talking about NASA’s DART Mission.

For eons now, asteroids have been zipping and zooming past our planet.  Every once in a while, one of those asteroids will hit our planet, causing anywhere from minor to major to global mass extinction event levels of damage.  But on Monday, September 27, 2022, humanity will perform our first ever experiment to see if it’s possible to smack an incoming asteroid away.

The asteroid in question is named Dimorphos.  Dimorphos is not actually a threat to us, but if we’re going to perform an experiment like this, Dimorphos is a rather convenient target for target practice.  That’s because Dimorphos is not just an asteroid; it’s also a moon (or should I call it a moonlet?) orbiting a larger asteroid named Didymos.

When the DART spacecraft crashes into Dimorphos, the force of the impact will change Dimorphos’s orbit around Didymos.  It should be fairly easy for astronomers to measure this change, and thus it should be fairly easy to judge how effective DART was—and just how effective DART would have been against an asteroid that was actually threatening us.

Oh, and just in case anyone’s concerned that DART might accidentally knock Dimorphos out of its original orbit entirely and send it hurtling our way, thus ironically causing the very disaster this mission was meant to help prevent—don’t worry.  Didymos’s gravitational hold on Dimorphos is strong.  No matter what happens on this mission, Didymos is not going to let her little moonlet go (another reason why Dimorphos was selected as the target for this experiment).

So on Monday, September 27, 2022, there will be a head-on collision between an asteroid/moonlet and a NASA spacecraft.

An Italian-built spacecraft named LICIACube will be positioned nearby to observe the experiment.  A multitude of Earth-based telescopes will also be watching.  The European Space Agency also plans to send a follow-up mission (named Hera) in 2026, to check up on Dimorphos after its post-impact orbit has had some time to settle down.

Life on Earth has never been able to defend itself from incoming asteroids before.  Life on Earth has never had the ability to even try, until now [citation needed].  Obviously asteroids are not the only threat to life on our planet.  Obviously this is not the only challenge we need to overcome.  But the DART Mission is a huge first step.  A true giant leap.  No, DART probably won’t get the same kind of love and attention as Webb or Artemis 1, but still I’d say this is the #1 most important space story of the year.  This may be one of the most important science experiments in all of Earth history.

WANT TO LEARN MORE?

P.S.: I said life on Earth has never before had the ability to defend itself from incoming asteroids.  Technically speaking, we cannot be 100% sure that’s true.  Click here to read my post on the Silurian Hypothesis.

Sciency Words: The Yarkovsky Effect

Hello, friends!  Welcome to another episode of Sciency Words, a special series here on Planet Pailly where we discuss the definitions and etymologies of scientific terms, in order to expand our scientific vocabularies together!  Today’s Sciency Word is:

THE YARKOVSKY EFFECT

Imagine an asteroid orbiting the Sun.  Every once in a while, this asteroid passes alarmingly close to Earth.  If you’re familiar with Kepler’s laws of planetary motion, you may expect that scientists could predict, with pinpoint accuracy, where that asteroid will be years, decades, or even centuries into the future.  However, there are certain physical forces acting on asteroids that are not accounted for in Kepler’s laws.  One of those physical forces is known as the Yarkovsky Effect.

Definition of the Yarkovsky Effect: In astrophysics, the Yarkovsky Effect is a thermal force that affects the orbit of asteroids.  Like most planets, asteroids rotate; therefore, you could say that asteroids have day-night cycles.  During daytime, the surface of an asteroid absorbs heat from the Sun.  At night, the asteroid’s surface cools off by radiating heat out into space.  This radiating heat generates a very, very, very small amount of thrust.  Over time, that small amount of thrust can dramatically change the orbital trajectory of an asteroid.

Etymology of the Yarkovsky Effect: The Yarkovsky Effect is named in honor of Polish/Russian civil engineer Ivan Yarkovsky, who first described a similar “heat engine” effect in 1888, and who later published a pamphlet on the topic in 1901.  Yarkovsky’s work would have been lost to history, except that Estonian physicist Ernst Öpik recalled reading Yarkovsky’s 1901 pamphlet and reintroduced the idea to the physics community in 1951.

Yarkovsky was more of a science hobbyist than a professional scientist.  He had a day job working on railroads.  In his free time, he read a lot about science, and he did a lot of thinking.  He performed his own experiments, occasionally, and he came up with some interesting ideas that sound like utter nonsense today, but which must have made sense in the context of late 19th Century science.  Even the Yarkovsky Effect, as Yarkovsky originally described it, was tied up with a now defunct scientific theory called ether theory.

Still, even if his starting assumptions were off track, Yarkovsky stumbled upon the truth at least one time.  Asteroids do have “heat engines,” as Yarkovsky described it.  Asteroids do have these naturally occurring thermal propulsion systems, powered by sunlight, which can mess with their orbits.  The challenge for astrophysicists today is that the Yarkovsky Effect is kind of random (or if it isn’t random, in the truest sense of the word, then it may as well be).

Asteroids are irregularly shaped.  Sometimes, they rotate on more than one axis (I once read a paper that called this multiple axis rotation “chaotic tumbling”).  And in terms of mineral composition, asteroids are made of all sorts of crazy stuff.  Different minerals can absorb and radiate heat in different ways.  So the Yarkovsky Effect pushes asteroids around, but because of all the variables I just mentioned, it’s hard to say which direction the Yarkovsky Effect will push at any given time.  It’s also hard to say how hard of a push the Yarkovsky Effect might give.

Which is why missions to study asteroids—missions like the recent ORISIR-REx Mission or the upcoming DART Mission—are so important.  We may never understand asteroids perfectly, but we do need to understand them better.  There are so many asteroids that fly alarmingly close to Earth.  It would be nice if astrophysicists could predict, with pinpoint accuracy or something near to it, where those asteroids will be years, decades or centuries into the future.

WANT TO LEARN MORE?

I used the following sources to write this blog post.  The one at the bottom is kind of a long read, but it tells the fascinating story of Ivan Yarkovsky, a man who was nearly forgotten by history.  For those of you who are interested in the history of science, it is well worth a read.

#IWSG: We’ll Fly When We’re Ready

Hello, friends!  Welcome to this month’s meeting of the Insecure Writer’s Support Group, a blog hop created by Alex J. Cavanaugh and co-hosted this month by Kim Lajevardi, Cathrina Constantine, Natalie Aguirre, Olga Godim, Michelle Wallace, and Louise – Fundy Blue.  To sign up for IWSG and to learn more about this amazingly supportive group, click here!

In my last two blog posts, I wrote about the Indian space program and the American space program.  Both have suffered recent delays and setbacks.  Both are still moving forward with their space exploration plans, despite those setbacks.  Whenever I read about real life space programs, I’m always struck by the parallels between space exploration and writing.

Whether we’re talking about space or writing, we’re talking about big ambitions.  Big aspirations.  We’re talking about a lot of hard work (but the fun kind of hard work, the exciting kind of hard work).  We’re also talking about constant setbacks and delays, with certain financial realities looming over us at all times.

A couple years ago, I published my first novella-length Sci-Fi story on Amazon Kindle.  My plan was to follow up, quickly, with a sequel.  Around the same time, I also launched a store on RedBubble so I could sell prints of some of my art.  And then… setbacks.  Delays.  Real life problems.  It was like trying to plug fuel leaks on the Artemis 1 rocket.  As soon as I fixed the problem here, I’d discover liquid hydrogen was spraying all over the place over there.

I can report that 2022 has been a better year for me.  Slowly—very slowly—my writing and my art have gotten back on track.  I’ve been blogging more.  I’m making progress on my next Sci-Fi novella.  Also, I’ve started uploading new art to my RedBubble store for the first time in two years.  But writing takes time.  Art takes time.  As much as I want to rush forward with all my creative dreams, I need to be patient with myself.

After NASA scrubbed the launch of Artemis 1 not once but twice last week, NASA Administrator Bill Nelson had this to say: “We’ll fly when we’re ready.”  Right now, as I get back into the rhythm of writing and illustrating, that’s my mantra.  My muse and I… we’ll fly when we’re ready.

Artemis 1: Haters Gonna Hate

Hello, friends!

My gosh, certain people sure do love doling out criticism.  Even the slightest mistake or delay, and the critics come out in droves, robed in all their smugness.  I see this all the time as a writer and an artist, and on Monday I saw a smattering of critics online smugly criticizing NASA’s Artemis Program.

On Monday morning, NASA had to scrub the launch of Artemis 1, an uncrewed test flight of the spacecraft that will soon return American astronauts to the Moon.  Apparently there was trouble with one of the engines.  Most people, I think, understand that technical problems happen and that safety must come first.  But a few folks out there saw this as an opportunity to take cheap shots at NASA, the U.S. government, and America as a whole.

Now look… (heavy sigh)… okay, there are some valid criticisms to be made about all those things.  The United States has problems.  NASA has problems.  The Artemis Program, in particular, has been politicized from the start, and whenever things get political in the U.S., bad decisions ensue.  But even if none of that were the case, even if NASA could somehow operate independently of Congress and politics, problems would still crop up.

Taking time to stop and fix the problem with Artemis 1’s engine—that’s not a sign of weakness.  That’s not a failure.  If anything, it shows that the people at NASA are doing their jobs, taking the proper precautions, and learning from past mistakes.  Ignoring the engine issue—plowing ahead with the original plan, regardless of the danger—potentially allowing a multi-billion dollar spacecraft to blow up on the launchpad?  That would have been a real failure.

But no, a few people out there think delaying the launch for a few days is a “huge embarrassment” for America.  There will always be people like this who act super smug while lobbing lazy criticism at others.  Whether you’re a national space agency or just some writer/illustrator on the Internet, try to ignore this sort of criticism if you can (or rant about it on your blog, if you must—just don’t dwell on it for too long).

WANT TO LEARN MORE?

Fran, from My Hubble Abode, posted a wonderful video on YouTube reacting to some of the nonsense people have been saying about the Artemis 1 launch delay. Click here to check it out!

Sciency Words: Gaganaut

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we take a closer look at the definitions and etymologies of science or science-related terms.  Today’s Sciency Word is:

GAGANAUT

Back in the day, there were only two words for “person who goes to space.”  There were astronauts and there were cosmonauts, with the only meaningful distinction being that astronauts came from the United States and cosmonauts came from the Soviet Union.  Today, multiple space agencies use the word astronaut.  It’s almost (but not quite) a generic term now.  But Russia still uses the word cosmonaut, Chinese astronauts are actually called taikonauts, and just last week I learned that astronauts from India are to be referred to as gaganauts.

Definition of gaganaut: A person from India or otherwise associated with the Indian Space Research Organization (ISRO) who travels to space.

Etymology of gaganaut: Formed by analogy with astronaut and cosmonaut.  The “gaga-” part traces back to a Sanskrit word meaning “the sky,” while “-naut” comes from Greek and means “sailor.”

Aside from national origin, there’s still no real difference between astronauts, cosmonauts, taikonauts, and gaganauts.  They all travel to outer space.  They all do basically the same job.  They all have the same United Nations granted status as “envoys of Mankind” (not that that’s been super relevant yet, but someday… you never know!).

I guess the main takeaway from this is that “astronaut” is not a truly generic term.  It is a term used by most space agencies, but not all of them.  And each of the terms currently in use—astronaut, cosmonaut, taikonaut, and now gaganaut—come with certain cultural and perhaps also political connotations.  Just something to keep in mind whenever we talk about people who go to space, specifically or generically.

The Indian Space Research Organization (ISRO) had originally planned to launch its first crewed mission in December of 2021, according to Wikipedia, but COVID threw a wrench into those plans.  So it will be a few more years before the gaganauts get to fly.

#IWSG: The Planets Make Me Write

Hello, friends!  Welcome to another meeting of the Insecure Writer’s Support Group, a monthly blog hop hosted by Alex J. Cavanaugh and co-hosted this month by SE White, Cathrina Constantine, Natalie Aguire, Joylene Nowell Butler, and Jacqui Murray.  To learn more about this amazingly supportive group, click here!

I read somewhere once that every writer has a “thing”—something that they’re desperately trying to say.  It’s something that’s hard to put into words, a feeling or an idea that defies the conventional use of language.  If this “thing” could be said in a simple and straightforward way, we writers would just say it and move on rather than spend the bulk of our lives writing.

What is that “thing” for me?  I wish I could tell you!  It would be so much easier if I could just tell you the “thing” that keeps poking at my mind, but of course I can’t.  All I can say is that my thing has something to do with the stars.  It has something to do with the slow and stately motion of the planets.  It has something to do with that feeling I get whenever I look up at the nighttime sky.

Is it curiosity?  A sense of wonder at the vastness of the cosmos?  I guess that’s part of it, but those words feel wholly inadequate.  Wonder and curiosity are nice, but there’s something more.  There’s so much more!  The planets and stars inspire something in me that simply must be said—something that must be put into words, no matter what—it must be!

But no words ever seem to express this “thing” well enough.  So I keep trying.  I keep writing, in the hope that maybe someday I’ll find a way to say the thing I don’t know how to say, and maybe somebody else will read my words and understand what I’m talking about.

So, friends, do you have a “thing” that you’re trying to say through your writing?  Care to give us a clue (if you can) about what your “thing” might be?