Sciency Words: Flying Saucer

Hello, friends!  Welcome back to Sciency Words, a special series here on Planet Pailly where we talk about science or science-related terms.  Today’s Sciency Word is:

FLYING SAUCER

Okay, first question: does this really count as a scientific term?  Probably not, but the origin of the term “flying saucer” is pretty interesting nonetheless.  I’m going to go ahead and say this one’s sciency enough for Sciency Words!

So, on June 25, 1947, an article appeared in The East Oregonian reporting on the sighting of “nine saucer-like aircraft flying in formation.”  American businessman and aviator Kenneth Arnold had been flying his airplane near Mount Rainier, in Washington State, when he saw something he could not explain: nine flashes of light, like sunlight glinting off metal.

By all accounts, Arnold was legitimately confused by these strange lights.  But he did not jump to any conclusions.  He did not immediately assume he was looking at a squadron of extraterrestrial spaceships.  In other words, Kenneth Arnold was not this guy:

Instead, Arnold tried to observe and record as much information as he could, in an objective and unbiased manner, paying attention to any details that might help solve the mystery.  Based on what it says in this article (an interview with the newspaper reporter who initially interviewed Arnold), it sounds like Arnold went to the press in the hope that someone out there might read the story and come forward with a plausible explanation for what those weird light really were.

But some details of Arnold’s story were not reported accurately.  Most notably, Arnold never said the flying objects he saw looked saucer-like.  In this article from The Atlantic, Arnold is quoted trying to clear up the confusion:

These objects more or less fluttered like they were, oh, I’d say, boats on very rough water or very rough air of some type, and when I described how they flew, I said that they flew like they take a saucer and throw it across the water.  Most of the newspapers misunderstood and misquoted that too.  They said that I said that they were saucer-like; I said that they flew in a saucer-like fashion.

According to that same article from The Atlantic, this may have been “one of the most significant reporter misquotes in history.”

It’s not entirely clear when “saucer-like aircraft” got simplified into “flying saucer,” but it seems to have happened in a matter of weeks, if not days.  The original news article was published on June 25, 1947; according to the Oxford English Dictionary, the earliest known usage of “flying saucer” is from July 8th of the same year, and the quotation cited by the O.E.D. makes it sound like this “nickname” was already in widespread usage.

And thus, flying saucers became part of the popular lexicon, not because Kenneth Arnold said that’s what he saw but because Arnold was misquoted by a newspaper reporter.

Sciency Words: VIRA

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we take a closer look at some interesting and new scientific term so we can expand our scientific vocabularies together.  Today’s Sciency Word is:

VIRA

You don’t mind if I do one more post about Venus, do you?  Venus is my favorite planet, after all, and the detection of phosphine (a possible biosignature!) in Venus’s atmosphere has got me really excited.  I’ve been reading lots of papers and articles about Venus lately, and many of those papers and articles mention something called VIRA.

VIRA stands for Venus International Reference Atmosphere.  VIRA is actually a book, originally published in 1985 by an international committee on space research.  The purpose of VIRA was to consolidate everything we knew about Venus’s atmosphere at that time into a single, easy to use reference guide.  As planetary scientist David Grinspoon describes it in his book Venus Revealed:

Although not exactly a best-seller, [VIRA] is a cherished reference among students of Venus’s atmosphere, and many a copy has become dog-eared and worn.  The tables and summaries of atmospheric data found therein are still the standard on Earth for Venus models, and the wide use of this standard allows us to make sure that we are comparing apples with apples, when making models and sharing new results.

One thing I don’t understand: why are Venus researchers still relying so heavily on a reference guide from 1985?  I’ve found several scientific papers (like this one or this one or this one) offering updates and improvements to VIRA.  And yet, unless I’m missing something (I feel like I must be missing something), it sounds like the original 1985 VIRA is still used as the gold standard for modeling Venus’s atmosphere.

Anyway, when people say we can’t explain where Venus’s phosphine comes from, in a sense, what they mean is that there’s nothing in VIRA that helps explain it.  So maybe the discovery of phosphine in Venus’s atmosphere will finally give scientists the push they need to update VIRA for the 21st Century.

P.S.: According to this paper, there’s also a Mars International Reference Atmosphere, or MIRA.  And I’m guessing there are similar reference atmospheres for other planets and moons in our Solar System as well.

Daily Life with Dinosaurs

Hello, friends!

There’s an important science fact that I wish more people were aware of.  Birds are not merely the descendants of dinosaurs.  According to a taxonomic system called cladistics (also known as phylogenetic systematics), birds are dinosaurs.  To quote this article from DinoBuzz:

Using proper terminology, birds are avian dinosaurs; other dinosaurs are non-avian dinosaurs, and (strange as it may sound) birds are technically considered reptiles.  Overly technical?  Just semantics?  Perhaps, but still good science.

So with that in mind, the following statements are 100% true:

  • I often wake up to the sound of noisy dinosaurs outside my window.
  • I sometimes see dinosaurs swimming in the river near my house.
  • I hate it when dinosaurs poop on my car.
  • I enjoy eating dinosaur meat.  Sometimes I put dinosaur meat on sandwiches or in salads.

Anyway, what sort of experiences have you had with dinosaurs in your daily life?  Please share in the comments!

P.S.: Have you seen those dinosaur-shaped chicken nuggets in the grocery store? They’re cute.  I’m just not convinced that they’re made from 100% real dinosaur meat.

Sciency Words: Global Resurfacing

Hello, friends!  Welcome back to Sciency Words, a special series here on Planet Pailly where we talk about those wild and crazy words scientists like to use.  Today on Sciency Words, we’re talking about:

GLOBAL RESURFACING

Venus is a mysterious planet.  Ever since the detection of phosphine in the Venusian atmosphere, the mystery du jour has been: does Venus support life?

We’ll circle back to Venus’s phosphine in a moment, but first I’d like to turn our attention to a different mystery concerning Venus: where did all of Venus’s craters go?

Impact craters are a common sight in the Solar System, especially here in the inner Solar System.  You’ll find plenty of craters on the Moon, of course.  You’ll find lots of them on Mercury, Earth, and Mars as well.  Some of those craters look fresh and new.  Others, due to weathering and erosion, look quite old—sometimes extremely old.

But the surface of Venus is relatively crater free, and the few craters we do find appear to be very, very recent.  In his book Venus Revealed, American planetary scientist David Grinspoon describes Venus’s craters thusly:

All the craters on Venus look unnaturally pristine.  Instead of blending into the volcanic plains that cover most of the planet, they seem planted on top as an afterthought, as though a crew had built a cheap movie-set planet and realized at the last minute that they had better throw in some craters.

Grinspoon goes on to explain how this might have happened:

Suppose that half a billion years ago something happened to Venus, wiping out all older craters.  Vast lava flows occurring simultaneously all over the planet would do the trick.  Then, if there has been relatively little surface activity since that time and Venus has been slowly collecting craters all along, things should look as they do.

This sudden event, when the whole surface of Venus got covered in fresh lava, is called “global resurfacing.” That’s a nice euphemism for an apocalyptic event, isn’t it?

Now this is important: Venus should have had little-to-no volcanic activity since her last global resurfacing event.  Otherwise, those younger, fresher, “unnaturally pristine”-looking craters would have gotten resurfaced too.  But in the last few years, circumstantial evidence has emerged suggesting that there are active volcanoes on Venus after all.

And now, finally, we circle back to the detection of phosphine in the Venusian atmosphere.  Some have suggested that that could be evidence of Venusian life.  But according to this preprint paper, that phosphine signature could also be interpreted as further evidence of volcanic activity.  Maybe global resurfacing was not a one-time event half a billion years ago.  Maybe resurfacing is an ongoing process that’s still happening today!

In a previous post, I said that Venus is about to teach us something we did not know: maybe it’ll be a biology lesson, or maybe it’ll be a chemistry lesson.  But now I think there’s a third possibility: maybe it’ll be a geology lesson.

P.S.: Special thanks to Mike Smith from Self Aware Patterns for sending that preprint paper my way.  At this point, it is just a preprint paper waiting to go through the peer review process, so don’t get too excited.  But the more I think about it, the more I feel like the authors of that paper are on the right track.

#IWSG: Being a Working Writer

Hello, friends, and welcome to this month’s meeting of the Insecure Writer’s Support Group.  If you’re a writer and if you feel in any way insecure about your writing life, click here to learn more about this amazingly supportive group!

This month’s optional I.W.S.G. question asks, in part: “When you think of the term working writer, what does that look like to you?”  My muse and I have had a lot of discussions about what it means to be a working writer.  We have a very clear picture of what that should look like for us.  It should look like this:

But that doesn’t happen most of the time.  Why not?  Because writing only generates a small portion of my income (Oh, before I forget: click here to buy my book!), and I still have to make the rest of my money doing a non-writing job.  All the time spent away from writing, due to that other job, leaves me feeling frustrated and my muse feeling sad.

Honestly, I don’t really care if I call myself a working writer or a hobbyist.  I don’t care if I’m a professional or an amateur.  Those are just labels.  What matters to me is getting more time in my day for writing.  My muse and I want to have our little writing party (as pictured above) every single day for the rest of our lives.

So if being a “working writer” can help make that happen, then that’s what I intend to do.

Sciency Words: The Unknown Absorber

Hello, friends!  Welcome back to Sciency Words, a special species here on Planet Pailly where we talk about those weird and wonderful words scientists like to use.  Today on Sciency Words, we’re talking about:

THE UNKNOWN ABSORBER

We’ve talked about this one before.  Several times now.  But given the recent news about Venus, I feel like this is a topic worth revisiting right now.

In 1974, NASA’s Mariner 10 spacecraft discovered that an unknown chemical in Venus’s atmosphere was absorbing copious amounts of ultraviolet light.  No one could figure out what this chemical could be.  And whenever science can’t figure something out, people’s imaginations tend to run wild.

What if this unknown ultraviolet absorber were a complicated chlorophyll-like molecule?  That would imply that some sort of organism, perhaps something like Earth’s cyanobacteria, was soaking up U.V. light and using it for some sort of alien version of photosynthesis!

Now you may be wondering how anything could live on a planet as absurdly hot as Venus.  Venus’s surface temperature is approximately 460°C (870°F).  But the unknown absorber wasn’t found on Venus’s surface; it was drifting around in the upper layers of Venus’s clouds, where the temperature is about 30°C (80°F)—almost Earth-like!  And as we learned in a previous Sciency Words post, microorganisms can (and do) use clouds as a habitat.

Don’t get too excited, though.  The unknown absorber was a mystery for a time, but in 2016 it was identified as a fairly simple sulfur compound.  At this point, there is no reason to think the formerly unknown absorber has anything to do with photosynthesis or any other biological process.  It’s just another weird chemical among the many, many weird chemicals found on Venus.

So when you hear about the discovery of phosphine in Venus’s atmosphere, and when you hear speculation about where that phosphine might be coming from, remember the story of the unknown absorber.

More Phosphine Fever with Jupiter and Saturn

Hello, friends!  When the news came out that phosphine gas had been discovered on Venus, I’m sure we were all thinking the same thing: So what?  There’s phosphine on Jupiter and Saturn too.  Everybody knows that (don’t they?), and nobody thinks that means Jupiter or Saturn have life.

Fortunately, the authors of this paper from Nature Astronomy address the obvious Jupiter/Saturn issue right away:

[Phosphine] is found elsewhere in the Solar System only in the reducing atmospheres of gas giant planets, where it is produced in deep atmospheric layers at high temperatures and pressures, and dredged upwards by convection.  Solid surfaces of rocky planets present a barrier to their interiors, and PH3 would be rapidly destroyed in their highly oxidized crusts and atmospheres.

In other words, it’s very simple for astrophysicists to explain how Jupiter and Saturn make their phosphine.  Gas giants with hydrogen-rich atmospheres can do this easily. But how does Venus do it?  That’s a much harder question.  The only other small, rocky planet with phosphine in its atmosphere is Earth, and we know where Earth’s phosphine comes from: life.

And that is why the discovery of phosphine on Venus is so exciting, while the presence of phosphine on Jupiter and Saturn is no big deal.

Venus Has Phosphine Fever

Hello, friends!

Over the last decade or so, Mars has been trying really hard to convince us that he can (and does) support life.  We’ve seen evidence of liquid water on the Martian surface, and traces of methane have been detected in the Martian atmosphere.  These things are highly suggestive, but none of that proves Martian life exists.

It would be nice if we knew of a chemical that clearly and unambiguously proved that a planet has life, wouldn’t it?  According to this paper published in Nature Astronomy, phosphine (chemical formula PH3) might be the clear and unambiguous biosignature we need.  Here on Earth, phosphine gas is a waste product produced by certain species of anaerobic bacteria.  It’s also produced by humans in our factories.  Either way, the presence of phosphine in Earth’s atmosphere is strong evidence that there’s life on Earth.

And according to that same paper from Nature Astronomy, astronomers have now detected phosphine on another planet.  No, it wasn’t Mars.

Okay, we humans do know of non-biological ways to make phosphine, but they’d require Venus to be a very, very different planet than she currently is.  For example, Venus would need to have a hydrogen-rich atmosphere, or Venus would have to be bombarded constantly with phosphorus-rich asteroids, or the Venusian surface would have to be covered with active volcanoes (more specifically, Venus would need at least 200 times more volcanic activity than Earth).

None of that appears to be true for Venus, so we’re left with two possibilities:

  • There is life on Venus.
  • There’s something we humans don’t know about phosphine, in which case phosphine is not the clear and unambiguous biosignature we hoped it was.

In either event, Venus is about to teach us something.  Maybe it’s a biology lesson.  That would be awesome!  Or maybe it’s a chemistry lesson.  Personally, I’m expecting it to be a chemistry lesson.  There must be some other way to make phosphine that we humans never thought of.

P.S.: Now I’m sure a lot of you are thinking: “Wait a minute, don’t Jupiter and Saturn have phosphine in their atmospheres too?”  You’re right.  They do, and we’ll talk about that in Wednesday’s post.

Sciency Words: Aerobiology

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we talk about those weird and wonderful words scientists like to use.  Today on Sciency Words, we’re talking about:

AEROBIOLOGY

You will find life pretty much anywhere you go on Earth.  Living things are in the water, on the land, and up in the air.

Aerobiology comes from three Greek words meaning “air,” “life,” and “the study of.”  So aerobiology is the study of airborne life, specifically airborne microbial life.  According to the Oxford English Dictionary, the term was first introduced in the late 1930’s.

I have to confess I am totally new to aerobiology.  I only found out about this term yesterday, and I don’t want anything I say to misrepresent the field.  But based on what I have read, it sounds like aerobiologists are primarily concerned with protecting public health from the spread of pollen and other allergens, as well as the spread of airborne diseases.

However, aerobiologists also study airborne microbes that are not a direct threat to human health—and this is the part that connects to the outer space stuff I normally write about.  For decades now, aerobiologists have known that algae and other common microorganisms can fly up into Earth’s atmosphere and travel great distances on the wind.  And according to this 2001 paper, microorganisms can (and do) remain active—growing and reproducing—inside the water droplets found in clouds.  As the authors of that 2001 paper explain it, we should start thinking of clouds as microbial habitats.

So what does this have to do with outer space?  Well, if clouds on Earth can serve as a habitat for microorganisms, then maybe microorganisms could exist in the clouds of some other planet.

And by some other planet, I mean Venus.

And by maybe, I mean stay tuned for Monday’s post.

A Breath of Fresh Hydrogen

Hello, friends!

So let’s imagine that extraterrestrials don’t breathe oxygen.  Oxygen is a pretty dangerous chemical, after all, so there’s good reason why alien organisms might want to avoid it.  But what would these aliens breathe instead?

A few years back, I came across an interesting “fact” on a conspiracy theory website.  The government doesn’t want you to know this, but apparently a lot of alien species breathe hydrogen.  That conspiracy theory website said a lot of weird and wacky things, but this hydrogen-breathing alien idea… based on what I know about chemistry, that idea kind of made sense to me.

You see we Earthlings use oxygen to oxidize our food.  This oxidation reaction generates the energy we need to stay alive.  But oxidation reactions are sort of equal-and-opposite to reduction reactions.  Oxygen is a powerful oxidizing agent, obviously, but hydrogen?  Hydrogen is a pretty effective reducing agent.

A paper published earlier this year examined the possibility of Earth-like planets with hydrogen-rich atmospheres.  Such planets could, in theory, exist, but they’d have to meet one or more of the following criteria:

  • The planet would have to be much colder than Earth (think Titan or Pluto-like temperatures).
  • The planet would have to have much higher surface gravity than Earth.
  • The planet would have to continuously outgas hydrogen from some underground source (subsurface reservoirs of water ice mixed with methane ice might do the trick).

If one or more of these conditions are not met, then a hydrogen-rich atmosphere would quickly fizzle out into space through a process called Jeans escape.

Now, could life exist in that sort of hydrogen-rich environment?  The answer is yes.  Absolutely yes.  Even here on Earth, there are organisms that “breathe” hydrogen and use it to generate energy through reduction reactions.  These organisms can be found deep underground, or clustered around deep-sea hydrothermal vents, or in other exotic niche environments where hydrogen is plentiful and oxygen is rare.

The real question is: could hydrogen-breathers evolve into complex, multicellular life forms?  Earth’s hydrogen-breathers are mere microorganisms.  Their version of respiration is nowhere near as efficient as the oxygen-based system we humans and our animal friends use.  The inefficiency of hydrogen-based respiration has stunted the evolutionary development of Earthly hydrogen-breathers.

But maybe on another planet—a planet with a hydrogen-rich atmosphere unlike anything Earth has ever seen—maybe complex multicellular life could evolve on a planet like that.  Maybe.

It’s plausible enough for science fiction, at least.