Space Chimp Lives!

June 27, 2017

Today I’d like to share an amusing photograph from the early days of space exploration. This is Ham the Chimpanzee.

His name comes from the laboratory that trained him for his mission: the Holloman Aerospace Medical Center. That’s important to know because Ham’s training is a key part of his story.

Ham was not just another confused and frightened animal strapped into a rocket and launched into space (though it sounds like he was definitely very frightened during his trip). Ham had a mission. He had a job to do during his flight. And he did it.

Specifically, Ham was trained to push a lever when he saw a flashing blue light. During training, he was rewarded with a banana pellet if he did his job correctly (he was also punished with electric shocks if he did his job incorrectly).

Ham’s success was significant because it proved that even under the physical stresses of space flight, it is possible to respond to visual stimuli and perform basic tasks. A human astronaut would therefore be able to operate the controls of a spacecraft during flight, which was an important thing for NASA to know in the early days of space exploration.

P.S.: I assume human astronauts are still rewarded with banana pellets when they do a good job (and also punished with mild electric shocks when they do their jobs incorrectly).


Ham (Chimpanzee) from Wikipedia.

A Brief History of Animals in Space from NASA.

Ham the Astrochimp: Hero or Victim? from The Guardian.

Sciency Words: Stochastic

June 23, 2017

Today’s post is part of a special series here on Planet Pailly called Sciency Words. Each week, we take a closer look at an interesting science or science-related term to help us expand our scientific vocabularies together. Today’s term is:


At first glance, stochastic appears to have a pretty easy definition. Basically, it means random. A stochastic event can be defined, quite simply, as a random event. So why do scientists need this weird term? Why can’t they just say random if they mean random?

I’ve seen this word now in a surprisingly wide range of scientific fields, most recently in relation to the population dynamics of endangered species and then in relation to the magnetic field of Jupiter. The thing is that in actual usage, stochastic and random aren’t quite synonyms. A better definition for stochastic might be “seemingly random.”

The word originates from a Greek word meaning “to aim at” or “to shoot at.” So it’s an archery term, but the Greeks also used it to mean “to guess at.” I like this linguistic metaphor because a guess really is like aiming for the truth; whether or not you hit the mark is another matter.

Anyway, the word seems to have migrated from Greek to German to English, and in its modern scientific sense it refers to something that might be predictable in theory but appears to be random in practice. As an example, you may have heard that the flapping of a butterfly’s wings could set in motion a chain of events ultimately leading to a devastating hurricane.

In theory, these butterfly-initiated hurricanes could be predicted, if only we knew the exact locations and flapping behaviors of every single butterfly on Earth (along with a million and one other factors). But in practice, since we can’t gather all the necessary data, we can only make educated guesses about when and where the next hurricane will hit.

In other words, hurricanes are stochastic events. They seem random, even though they’re not.

What’s the Minimum Viable Population of a Space Colony?

June 21, 2017

Let’s say we’ve found a human-friendly planet orbiting another star, and we’ve decided to go colonize it. How many people should we send? In terms of maintaining a healthy human gene pool, what’s the minimum viable population for a distant, isolated space colony?

If you’re anything like me, you’ve spent many a sleepless night pondering that question.

I sincerely doubt anyone can provide us with a firm, specific number. However, there is a sort of generalized rule of thumb in the field of conservation biology called the 50/500 rule.

Originally proposed in 1980 by geneticist Ian Franklin and biologist Michael Soule, the 50/500 rule tells us:

  • Populations below 50 are under near-term threat of extinction due to inbreeding.
  • Populations below 500 are under long-term threat of extinction because the gene pool is too small to adapt to environmental changes.

Except the 50/500 rule is not a hard scientific law. It’s just a rule of thumb, and it has many, many detractors.

Even Michael Soule, one of the co-creators of the rule, seems to have gotten pretty frustrated by the way people took the rule literally. Here’s an interesting and, I think, revealing article about some endangered parrots. A team of conservationists contacted Soule, asking if they should even bother trying to save these parrots, because there were only 48 left.

There also an argument to be made that the numbers 50 and 500 are too low and that a 100/1000 rule would be more appropriate. And of course, can we really apply this rule to all species equally when some species reproduce more rapidly than others or face different kinds of environmental challenges, etc, etc….

Still, if we’re trying to imagine a colony of humans on some distant world, a colony struggling for short-terma and/or long-term survival, I think the 50/500 rule at least gives us a good place to start.

Sciency Words: Technological Geometrization

June 16, 2017

Today’s post is part of a special series here on Planet Pailly called Sciency Words. Each week, we take a closer look at an interesting science or science-related term to help us expand our scientific vocabularies together. Today’s term is:


In 1990, the Galileo spacecraft was on its way to Jupiter and needed to perform a gravity assist maneuver at Earth. This turned out to be a golden opportunity for science. Could a typical NASA space probe equipped with a standard suite of instruments detect signs of life on a planet where we already knew life existed?

In a 1993 paper, Carl Sagan and colleagues presented their findings in this “control experiment for the search for extraterrestrial life.” The paper explores all the things Galileo observed and, more intriguingly, some of the big things Galileo missed. Things like the “technological geometrization” of the planet’s surface, as the paper called it.

As far as I can tell, technological geometrization is not a term that’s stuck in the scientific lexicon, which is a shame. I think it’s a really good term. It refers to the way technologically advanced civilizations would tend to create geometric patterns on their surfaces of their planets.

The planet Coruscant from the Star Wars universe is a great example. The entire planet is urbanized, to the point that natural geological features are completely covered over. From space, all you can see are straight lines and perfect circles—efficient city planning on a global scale.

As another example, back in the 1800’s Percival Lowell and an embarrassingly large number of other astronomers thought they saw canals crisscrossing the surface of Mars. Those canals, if they really existed, would have been clear evidence of a technologically advanced society geometrizing their planet.

Earth’s surface displays only the faint beginnings of technological geometrization: rectangular patches of farmland and the grid patterns of streets and highways. These features are visible from space (Google Earth proves that), but you have to get fairly close to Earth to notice those kinds of details.

Apparently Galileo didn’t get close enough. At an image resolution of 1-2 kilometers per pixel, the technological geometrization of Earth was effectively invisible.

P.S.: That paper by Sagan and Company was a really good paper. It served as the basis for my recent “Alien Eyes on Earth” series.

Have I Been Drawing Enceladus Wrong?

June 13, 2017

Enceladus, one of Saturn’s moons, is becoming increasingly famous as one of those places in the Solar System where we’re most likely to find alien life. It certainly has the water for it. On this blog, I traditionally depict Enceladus like this:

It’s a nice, icy-looking world with a cheerful personality and active geysers in its south polar region. But have I been drawing Enceladus wrong this whole time? Would it make more sense to draw it like this?

Maybe. According to this article from Saturn Daily, Enceladus may have tipped sideways (by about 55°) at some point in its history. Apparently surface features reveal evidence of an old equator and old north and south poles.

The story is that one day, Enceladus was orbiting along, minding its own business, when it got whacked hard by an asteroid. Saturn Daily tells us that following the impact, Enceladus would have spent about a million years wobbling back and forth until it could reorient its rotation.

But Enceladus did manage to reorient itself. It has a new axis of rotation, a new north and south pole, and a new equator. It’s not a sideways moon, at least not anymore, which means by the logic of space cartoons, I’ve been drawing Enceladus correctly.

At least I think I have. What do you think? Does it make sense to draw Enceladus based on its current orientation or its (possible) original orientation?

Sciency Words: Coronal Heating Problem

June 9, 2017

Today’s post is part of a special series here on Planet Pailly called Sciency Words. Each week, we take a closer look at an interesting science or science-related term to help us expand our scientific vocabularies together. Today’s term is:


This is the Sun. He’s kind of a big deal, and he knows it.

The interior of the Sun is several million degrees Celsius. By comparison, the surface of the Sun is quite chilly. It’s only a few thousand degrees. Still, if you were standing on the surface of the Sun, you wouldn’t last long.

But before you launch yourself into space to escape the heat, there’s something you should know: as you fly away from the Sun, passing through the corona, the temperature starts getting hotter again. It’s not quite as hot as the interior, but still… we’re back into million-plus degree heat.

If that doesn’t make sense to you, that’s okay. It doesn’t make sense to me either, or anyone else. Astro-scientists have been baffled by this for decades now. They call it the coronal heating problem.

I first heard about the coronal heating problem back in 2014, when I was starting my research for what became the 2015 Mission to the Solar System. To be honest, it’s not something I’ve spent a lot of time thinking about since then. Every once in a while, it comes up again and I think, “Oh right… so they still haven’t figured that out yet?”

But as you may heave heard last week, NASA’s on the case. Their newly named Parker Solar Probe is going to skim very close to the Sun and try to figure out what the heck’s going on.

Parker is scheduled for a launch window in July/August of 2018. Its mission is expected to last until 2025. So hopefully a decade from now, whenever I’m reminded of the coronal heating problem, it won’t be a problem anymore, and I’ll be able to think, “Oh right… they finally figured that out!”

Open Letter: Talking to Writers (An IWSG Post)

June 7, 2017

This is an open letter to anyone who’s ever had a conversation with me. You may or may not have been aware of this at the time, but I’m a writer. That means there’s something you should know: while we were talking, I was taking mental notes about you.

Okay, there’s no need to panic. I’m not in the habit of taking people I know or people I’ve met and just dropping them into my stories. Yes, some writers do that, but that’s not how my process works.

So I promise I will not create a character just like you; however, the things you said—especially the way you said them—may inform my character development process at some point in the future. Well, maybe not in the future. To be honest, I’m probably already using you as a source of inspiration.

If you used some particularly interesting turn of phrase of displayed some unique or striking mannerism while we were interacting, I may have actually written that down to ensure I wouldn’t forget. I wouldn’t have done this in front of you. That would’ve been rude. But be aware that I probably did this behind your back, and I probably added you to a file folder when I got home.

I hope this doesn’t make you feel self-conscious or uncomfortable. It’s important to me that you behave naturally. Or rather, I want you and need you to behave authentically, because authentic speech and behavior are precisely what I’m trying to replicate in my storytelling.

Thank you for your time. I just thought you ought to know what you’re getting yourself into when you talk to a writer like me.


J.S. Pailly.

Today’s post is part of the Insecure Writer’s Support Group, a blog hop hosted by Alex J. Cavanaugh and others. Click here to learn more about this awesome group and to see a list of participating blogs.