Mercury A to Z: Density

Hello, friends!  For this year’s A to Z Challenge, my theme is the planet Mercury.  Mercury may not be the most exciting planet in the Solar System, but he’s interesting in his own way, and I think he deserves a little more love and attention than he usually gets.  In today’s post, D is for:


In recent years, astronomers have discovered literally thousands of exoplanets (planets orbiting stars other than our Sun).  Every once in a while, one of these newly discovered exoplanets will be described as “Mercury-like.”  Now what do you think makes a planet “Mercury-like” in the minds of exoplanet hunters?  Are Mercury-like exoplanets small?  No, not necessarily.  Are they very close to their suns?  Again, not necessarily.  The most Mercury-like quality of a Mercury-like exoplanet is its density.  Mercury is an abnormally dense planet, due to the fact that Mercury has an abnormally large core.

Mercury’s core takes up roughly 85% of the planet’s internal volume.  For the sake of comparison, Earth’s core constitutes only 17% of Earth’s total volume.  For this reason, I sometimes like to call Mercury the avocado planet, because much like the seed inside an avocado, the core of Mercury is shockingly large.

The most likely explanation is that Mercury started out as a much larger planet, perhaps even an Earth-sized planet.  But then, in the very early days of the Solar System, young Mercury collided with another planetary body (in case anyone’s wondering, this would have happened long before the collision that created Caloris Basin).  Most of Mercury was destroyed.  Most of the debris from the collision probably fell into the Sun.  All that’s left today is the planet’s original iron core, buried under a relatively thin skin of rocky material.

So modern day Mercury is almost entirely made of iron, an extremely dense metal—which explains why Mercury is such an extremely dense planet.  The second densest planet in the Solar System, after Earth.

Now I have to level with you: I thought this was going to be one of the easier blog posts to write for this A to Z series, because I thought I already knew basically everything I needed to know about this topic.  But apparently there’s been some new research since the last time I read up about Mercury’s density and internal structure.

Decades ago, scientists assumed that Mercury’s core would be solid.  A planet as small as Mercury surely would have lost all his internal heat by now.  However, Mercury does have a magnetic field.  Planetary magnetic fields are usually caused by liquid metal sloshing around in a planet’s interior; ergo, Mercury must have a liquid core after all.  Right?

But apparently a few years ago (and this is the part I only learned about a few days ago), scientists were looking over gravity data from NASA’s MESSENGER Mission and realized that Mercury’s core cannot be entirely liquid.  Mercury’s core must be part liquid, to explain the magnetic field, but also part solid to explain MESSENGER’s gravity measurements.  So scientists now believe Mercury has a solid inner core surrounded by a liquid outer core.

So that’s a new thing that I have learned, and now it is a thing that you have learned, too.


I’m going to recommend this article from, explaining (in layperson’s terms) how scientists determined that Mercury must have this part liquid/part solid core.

And for anyone interested in the original research, here’s a link to the original research paper about Mercury’s liquid/solid core (I haven’t had a chance to read that paper yet, but I’m looking forward to doing so soon).

I also want to mention this article from, which briefly discusses one of those Mercury-like exoplanets I was talking about in the beginning of this post.  In fact, the exoplanet K2-229b is so Mercury-like that scientists have nicknamed it “Freddy” (get it?—because of the singer Freddy Mercury!).

10 thoughts on “Mercury A to Z: Density

  1. I guess I makes sense that it would still have a molten core despite it’s size given it’s proximity to the sun. It’s being kept warm.

    Liked by 2 people

  2. Your articles are always filled with fun-facts. They aren’t too sciency. I studied climatology for one semester and failed miserably because of the science. Now I can enjoy learning about sciency stuff here without the inundation of, well, science. Thanks for the Mercury fun-facts – it is very interesting.

    Liked by 2 people

    1. I never did well in science classes in school. My weakness is math. I’m super enthusiastic about science, but all the enthusiasm in the world won’t make up for the fact that I am really, really bad at math.

      Liked by 1 person

    1. The Solar System was a pretty dangerous place 4 billion years ago. Earth got hit real hard too, right around the same time. The collision led to the formation of our Moon.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.