Radiation on Europa: How Quickly Would It Kill You?

Hello, friends!  If you happen to have any radiation protection clothing lying around—like those lead aprons they give you for X-rays at the dentist—I recommend putting it on now before you read any further.  In today’s post, we’ll be exploring the radiation environment of Europa.

Europa is often listed as one of the top four places in the Solar System where we might find alien life.  That makes exploring Europa a top priority for NASA and other space agencies.  Unfortunately, Europa is one of the moons of Jupiter, with an orbit that puts Europa deep inside Jupiter’s radiation belts.

Radiation is going to be a problem wherever you go in space, but the radiation belts around Jupiter are extra scary. If you were to spend a few days on the surface of the Moon or Mars without any sort of radiation protection gear, you’d end up with a significantly higher risk of developing cancer at some point later in life.  If you spent a similar amount of time on the surface of Europa without radiation protection, you wouldn’t live long enough to worry about cancer.  Radiation sickness would kill you in a matter of days—maybe a matter of weeks, if you’re “lucky.”

– NASA’s Juno space probe flying through radiation near Jupiter.

Even robotic spacecraft have a tough time dealing with Jupiter’s radiation belts.  The Juno mission, currently orbiting Jupiter, has all its mission critical electronics sealed up inside what NASA calls a radiation vault.  It’s basically a big, heavy box with thick walls made of titanium.  The radiation vault cannot block all of the radiation, but it blocks enough of it that Juno should survive long enough to finish its mission.

NASA’s upcoming Europa Clipper mission, which will take an even closer look at Europa, will be equipped with a similar radiation vault.

Before we end today’s post, some of you may be wondering what all this radiation means for potential alien organisms living on Europa.  Well, it probably wouldn’t affect them much, if at all.  The aliens (if they exist) would be swimming around in Europa’s subsurface ocean, beneath several kilometers worth of water ice.  And large quantities of water happen to be one of the very best radiation shields nature can provide.

WANT TO LEARN MORE?

  • “Colonization of Europa” from Wikipedia.  Yeah, it’s a Wikipedia article, but if you’re interested in what it would take to put human beings on the surface of Europa, this article is a pretty good place to start.
  • “Juno Armored Up to Go to Jupiter” from nasa.gov.  This is a press release from 2010, when the Juno spacecraft was still under construction.  It describes, in plain English, what Juno’s radiation vault is and why Juno needs it so badly.
  • “Spent Fuel Pool” from What If?  For those of you who didn’t know about water’s incredible radiation blocking powers, this is an amusing look at water’s incredible radiation blocking powers.

Sciency Words: Stagnant Lid

Sciency Words: (proper noun) a special series here on Planet Pailly focusing on the definitions and etymologies of science or science-related terms.  Today’s Sciency Word is:

STAGNANT LID

Here on Earth, we have earthquakes.  Lots and lots of earthquakes.  And that’s very odd.

Maybe we should be thankful for all those earthquakes.  Our planet’s system of plate tectonics is unique in the Solar System.  Frequent earthquakes are a sign that Earth’s tectonic plates are still moving, that our planet is still geologically healthy.  The alternative would be stagnant lid tectonics, and that’s something we Earthlings probably don’t want.

In this 1996 paper, planetary scientists V.S. Solomatov and L.N. Moresi coined the term “stagnant lid” to describe what was happening on Venus—or rather what was not happening.  Venus doesn’t have active plate tectonics.  Maybe she did once, long ago.  If so, Venus’s plates somehow got stuck together, forming a rigid, inflexible shell.

The term stagnant lid has since been applied to almost every other planetary body in the Solar System, with the obvious exceptions of the four gas giants, and the possible exceptions of two of Jupiter’s moons: Europa and Ganymede.

According to this paper from Geoscience Frontiers, neither Europa nor Ganymede have truly Earth-like plate tectonics, but something similar may be happening.  The authors of that paper refer to the situation on Europa and Ganymede as “fragmented lid tectonics” or “ice floe tectonics.”  The upcoming Europa Clipper and JUICE missions should tell us more about how similar or different this is to Earth’s plate tectonics.

A stagnant lid does not necessarily mean that a planet or moon is geologically dead.  Venus and Io both have active volcanoes, for example, and it was recently confirmed that Mars has marsquakes.  But none of these stagnant lid worlds seem to be as lively as Earth—and I mean that in more ways than one.

If you buy into the Rare Earth Hypothesis, plate tectonics is one of those features that makes Earth so rare. Plate tectonics is something Earth has that other planets don’t, and thus it may be an important factor in why Earth can support life when so many other worlds can’t.

Sciency Words A to Z: JUICE

Welcome to a special A to Z Challenge edition of Sciency Words!  Sciency Words is an ongoing series here on Planet Pailly about the definitions and etymologies of science or science-related terms.  In today’s post, J is for:

JUICE

Speaking as a space enthusiast and a citizen of the United States, I have to confess I’m a bit disappointed with the status of the American space program.  While there have been some success stories—New Horizons, Curiosity, Scott Kelly’s year in space—I can’t help but feel like NASA has spent the last decade or so floundering.

However, it’s encouraging to see that so many other space agencies around the world are starting to pick up the slack.  My favorite example of this is the JUICE mission, a project of the European Space Agency (E.S.A.).

Astrobiologists have taken a keen interest in the icy moons of Jupiter.  There’s compelling evidence that one of those moons (Europa) has an ocean of liquid water beneath its surface.  There’s also a growing suspicion that two more of those moons (Ganymede and Callisto) may have subsurface oceans as well.

The original plan was for NASA and the E.S.A. to pool their resources for one big, giant mission to the Jupiter system.  But then the 2008 financial crisis hit.  The U.S. Congress was loath to spend money on anything—especially space stuff.  “Due to the unavailability of the proposed international partnerships […]”—that’s how this E.S.A. report describes the matter.

So the E.S.A. decided to go it alone. Personally, I think this was a very brave move.  E.S.A. has never done a mission to the outer Solar System before, not without NASA’s help.  But there has to be a first time for everything, right?  And so JUICE—the JUpiter ICy moons Explorer—began.  It’s not my favorite acronym, but it works.

According to E.S.A.’s website, JUICE will conduct multiple flybys of Europa and Callisto before settling into orbit around Ganymede.  You may be wondering why JUICE won’t be orbiting Europa.  This is in large part because of the radiation environment around Jupiter.  Europa may be more exciting to astrobiologists, but Ganymede is a safer place to park your spacecraft.

Meanwhile, NASA has recovered much of the funding it lost after the 2008 financial crisis, and they’re once again planning to send their own mission to the Jupiter system.  So maybe NASA and E.S.A. will get to explore those icy moons together after all!  Or maybe not.  According to this article from the Planetary Society, NASA’s budget is under threat once again.

I guess we’ll have to wait and see, but no matter what happens to NASA’s budget, E.S.A. seems fully committed to JUICE.  So speaking as a space enthusiast, at least I have that to look forward to.

Next time on Sciency Words A to Z, how do you measure the size of an alien civilization?