Our Place in Space: NIAC

Hello, friends!  Welcome to Our Place in Space: A to Z!  For this year’s A to Z Challenge, I’ll be taking you on a partly imaginative and highly optimistic tour of humanity’s future in outer space.  If you don’t know what the A to Z Challenge is, click here to learn more.  In today’s post, N is for…

NIAC

So far this month, we’ve talked about some pretty wild ideas for future missions in space.  We’ve talked about building an elevator to space.  We’ve talked about putting a radio telescope on the far side of the Moon.  We’ve talked about sending astronauts to Callisto, one of the moons of Jupiter, and exploring the hydrocarbon lakes on Titan (a moon of Saturn) using a robotic submarine.  As crazy as these ideas may seem, they’ve all received some amount of funding from NASA through a program called NIAC.

NIAC stands for NASA Innovative Advanced Concepts (yes, it’s an acronym that contains another acronym inside it).  NIAC is basically a program that awards grant money to researchers who are testing the limits of what we can do in space using current technology or who are developing new technologies that might one day revolutionize space exploration.  If you ever hear on the news that NASA is funding some project that sounds a little too Sci-Fi to be true, it probably just means that NASA gave somebody some NIAC funding for their research.

I once heard NIAC described as a high-risk/high-reward program.  Many NIAC projects probably won’t work out.  Some of these things really are too Sci-Fi to be true.  But what if a few NIAC projects do work?  What if some crazy idea that sounds like pure science fiction actually works!?!  Even if only a few NIAC funded projects do come to fruition, they could change everything for NASA.  More than that, they could change everything for human civilization.

I’m no expert on finances.  I’m certainly no expert on how the U.S. federal budget works.  I do know that space exploration is expensive.  Very expensive.

I also know that NASA does what it does within a very strict and rather inflexible budget.  I’m actually really impressed that NASA manages to do so much cool science stuff on such a tight budget.  This may seem weird, but I often ask myself “What would NASA do?” when I have to make difficult spending decisions.

Most NIAC projects are definitely not ready to fly and probably won’t be ready to fly for quite a few years to come.  But it makes sense to start planning for the future now.  It makes sense to do some of the research now that could help make a more Sci-Fi future become a reality.  That’s really what NIAC is all about.

Want to Learn More?

Wikipedia has a pretty thorough list of all the research projects that have received NIAC funding over the years, up to 2020.

Additionally, here’s a listing of NIAC funded projects from 2021, and here’s the listing for 2022.

Sciency Words: Entomopters

Sciency Words: (proper noun) a special series here on Planet Pailly focusing on the definitions and etymologies of science or science-related terms.  Today’s Sciency Word is:

ENTOMOPTERS

It is aerodynamically impossible for insects to fly, or so French entomologist Antoine Magnan famously claimed in 1934.  And it’s true.  If aerodynamics means the scientific principles governing the flight of airplanes, then you will have a very hard time explaining how insects fly using aerodynamics alone.

Do you know what else is aerodynamically impossible, or at least aerodynamically very, very difficult?  Flying on Mars.  The atmosphere is too thin for fixed-wing aircraft.  But perhaps where traditional aerodynamics fails, insect aerodynamics might succeed!

At least that was the thought behind the entomopter, a project proposed by Robert Michelson and colleagues at the Georgia Tech Research Institute back in the early 2000’s.  The term entomopter comes from two Greek words—entoma, meaning insect, and pteron, meaning wing.  So an entomopter is a flying machine that mimics the “aerodynamically impossibly” flight of insects.

As Michelson explains in this article:

Aerodynamic analyses of [insect] flight consistently revealed that their wings must produce 2-3 times more lift than conventional wings, and in some cases up to 6-7 times.  The extra load-lifting capacity this would offer Entomopters is highly significant, and indicates that a novel design based on flapping insect flight would outperform a more traditional aerodynamic approach.

The prototype entomopter built by Michelson and his research team was modeled after the hawk moth (scientific name Manduca sexta).  With a ten-centimeter wingspan, the hawk moth is an unusually large insect, which makes it easier to observe and study the movements of its wings. And I have to admit in this concept video from NASA, there is something distinctly moth-y about the way the entomopter flies.

I first learned about the entomopter while researching last week’s post on NASA’s NIAC program.  The entomopter was one of those so-crazy-it-might-work proposals that won grant money through NIAC.

You may have heard about the Mars Helicopter Scout (a.k.a. Marscopter), which will be accompanying NASA’s next Mars rover.  You may have also heard about Dragonfly, the robotic quadcopter that NASA plans to send to Titan sometime in the 2030’s. Neither of these spacecraft qualify as entomopters, and I’m really not sure how much thanks either Marscopter or Dragonfly owe to the entomopter project.  But I strongly suspect there is some sort of connection there.

Sciency Words: NIAC

Sciency Words: (proper noun) a special series here on Planet Pailly focusing on the definitions and etymologies of science or science-related terms.  Today’s Sciency Word is:

NIAC

Every once in a while, you’ll hear that NASA is working on some crazy Sci-Fi technology.  Space elevators, warp drive… stuff like that.  How seriously should you take this?  Well, I’m not sure, but NASA does have this special program called NIAC.

When NIAC was first created in 1998, the acronym stood for “NASA Institute for Advanced Concepts.”  The program was canceled for budgetary reasons in 2007, but then it was revived in 2011.  The acronym now stands for “NASA Innovative Advanced Concepts.”

As explained in a recent article from Scientific American, “The program functions as NASA’a venture capital arm, in that it supports technologies that might pan out, big-time.”  Basically, if you have a proposal for some highly speculative new space technology—something that sounds a little bit crazy, but not too crazy—NASA might give you grant money for your research.

NIAC funding has gone toward space elevators and robotic space bees.  A mission to Proxima Centauri using tiny “chip” sized space probes?  That got NIAC funding.  The almost magical sounding Mach effect thruster—a propulsion system that uses zero propellant?  That got NIAC funding.

Some of these ideas have been ridiculed by the scientific community and in the popular press.  And I have to agree: this stuff really does sound crazy.  But remember, The New York Times once ridiculed Robert Goddard for his crazy idea that rockets could get us to the Moon.  The New York Times was really harsh in their criticism.

But as we now know, Goddard was right, and The New York Times famously published an apology in 1969, just days before Apollo 11 landed on the Moon.

Most NIAC-funded projects probably won’t work out; but imagine what would happen if a few of them did!  So the next time you hear that NASA is working on some crazy sounding Sci-Fi tech, that probably just means somebody won a NIAC grant. I’m still not sure how seriously you or I should take these NIAC-funded projects, but maybe it’s okay to take them just a little bit seriously.