Sciency Words: Euphotic Zones

Sciency Words: (proper noun) a special series here on Planet Pailly focusing on the definitions and etymologies of science or science-related terms.  Today’s Sciency Word is:

EUPHOTIC ZONES

Based on what Google ngrams has to tell me, it looks like “euphotic” and “euphotic zone” entered the English lexicon right at the start of the 20th Century, then really caught on circa 1940.

The word euphotic is a combination of Greek words and means something like “good lighting” or “well lit.”  In the field of marine biology, the euphotic zone refers to the topmost layer of the ocean, or any body of water, where there’s still enough sunlight for photosynthesis to occur.

My first encounter with this term was in this paper by astrophysicists Carl Sagan and Edwin Salpeter.  Sagan and Salpeter sort of co-opted this term from marine biologists and applied it to the layer of Jupiter’s atmosphere where—hypothetically speaking—Jupiterian life might exist.

I don’t see any reason why the term could not also by used for other planets as well.  There’s a euphotic zone just above the cloud tops of Venus.  The same could be said about Saturn or Uranus.  Or maybe if the ice is thin enough, we may find euphotic zones right beneath the surfaces of Europa or Enceladus.

Of course just because a planet has a euphotic zone, that doesn’t mean photosynthetic organisms are living there.  And also there are plenty of ecosystems here on Earth that do not depend on photosynthesis and that don’t exist anywhere near a euphotic zone.

Still, I’m very glad to have picked up this term.  The concept of euphotic zones can be very helpful in any discussion of where alien life may or may not be hiding.

Sciency Words: Sinkers, Floaters, and Hunters

Sciency Words: (proper noun) a special series here on Planet Pailly focusing on the definitions and etymologies of science or science-related terms.  Today’s Sciency Word is:

SINKERS, FLOATERS, and HUNTERS

In the 1970’s, Carl Sagan and fellow astrophysicist Edwin Salpeter were curious about the orangey-red coloration seen on certain parts of Jupiter.  That sort of orangey-red color is frequently associated with organic chemistry (see my post on tholin).

So in this 1976 technical report for NASA, Sagan and Salpeter hypothesize that we really are seeing organic compounds in Jupiter’s atmosphere.  They then go on to imagine what kind of life might develop on a planet like Jupiter.  As a frame of reference, they start by describing one specific example of life here on Earth:

The best analogy seems to be the surface of the sea.  Oceanic phytoplankton inhabit a euphotic zone near the ocean surface where photosynthesis is possible.  They are slightly denser than seawater and passively sink out of the euphotic zone and die.  But such organisms reproduce as they sink, return some daughter cells to the euphotic zone through turbulent mixing, and in this way maintain a steady state population.

So if microorganisms exist on Jupiter, perhaps they follow a similar lifecycle.

Sagan and Salpeter name these hypothetical microorganisms “sinkers,” since sinking is pretty much the defining characteristic of their lifecycles.  But if these sinkers really do exist, then Jupiter may be able to support other, more complex forms of life as well.

Sagan and Salpeter go on to describe “floaters.” Floaters would be giant organisms, perhaps several kilometers in radius.  In order to remain buoyant, they’d have to have very thin skin and be filled with a lifting gas like hydrogen.  Floaters would drift aimlessly through the skies of Jupiter, feeding on the rising and falling swarms of sinkers.

And then there would be “hunters,” as Sagan and Salpeter call them, though that term may be misleading.  Hunters would be able to maneuver deliberately through the air, “hunting” for other organisms.  But these hunters would not eat their prey, at least not in the way we understand eating.  Instead, through a process called “coalescence,” the hunter and the hunted would merge together as one giant super-organism.

Personally, I think Sagan and Salpeter let their imaginations run a little too wild in this paper.  Could life exist on Jupiter?  Sure.  The universe is full of possibilities.  Can we predict with any specificity what life on Jupiter would be like?  I doubt it.

Still, the Jovian ecosystem that Sagan and Salpeter described seems plausible enough.  For the purposes of science fiction, it deserves some attention, and it inspired the short story I posted on Monday.  However, if you haven’t read that story yet, I have to confess (spoiler warning): it turns out the planet in that story is not Jupiter.