Sciency Words: P-P Chain

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we discuss the definitions and etymologies of scientific terminology.  In today’s post, we’ll be discussing the scientific term:

P-P CHAIN

I have, in the past, been accused of covering scientific terms on the basis of how silly they sound, rather than on the basis of pure scientific merit.  But I would never do such a thing.  I have far too much respect for both science and linguistics.  Now with that unambiguously established, let’s talk about the p-p chain.

Definition of the p-p chain: In the field of nuclear physics, the p-p chain refers to a series of nuclear fusion reactions, starting with the fusion of two protons and leading, ultimately, to the creation of a helium-4 nucleus.  The p-p chain is by far the most common fusion process occurring in the core of the Sun, as well as other stars of similar or smaller sizes.

Etymology of the p-p chain: The p’s in p-p chain refer to the two individual protons that fuse together in the very first step of the process.  English astronomer Sir Arthur Eddington first proposed that proton-proton fusion might be occurring inside stars, writing about it in a 1926 article titled “The Internal Constitution of the Stars.”  German-American theoretical physicist Hans Bethe worked out the step by step details of the process in a 1939 paper called “Energy Production in Stars.”  Sadly, I cannot give credit to either Eddington or Bethe for coining this term.  They came up with the idea and worked out the details, but I have not been able to determine who, exactly, first introduced the term “p-p chain” into the scientific literature.

There are at least three versions of the p-p chain, each with different intermediate steps between the individual protons at the start and the helium-4 nuclei at the end (a fourth version is possible in theory, but has yet to be verified in reality).

Recently, scientists at the National Ignition Facility (NIF) in California made significant progress in nuclear fusion research.  That recent experiment has been described as recreating the power of the Sun here on Earth, which is true enough.  But NIF did not recreate the entire p-p chain from start to finish; they did something loosely equivalent to the very last step only.  It seems that reproducing the whole chain is still beyond our current scientific abilities.

So the next time you notice the Sun, shining yellow-gold in the sky, just remember that she can still do p-p chains in ways we humans cannot.

WANT TO LEARN MORE?

If you’re looking for a more detailed and technical explanation of the p-p chain (and the three or four variations thereof), check out this article from encyclopedia.pub.  That article was my main source of information while writing this post.

You can also find Arthur Eddington’s “The Internal Constitution of the Stars” by clicking here and Hans Bethe’s “Energy Production in Stars” by clicking here.

And if you’re looking for a fun way to try nuclear fusion for yourself, check out the game Fe[26].  You slide around tiles marked with the names of different atomic nuclei, trying to combine them to make bigger and bigger elements.  Which nuclear combinations work and which ones don’t?  Play and find out for yourself!

Sciency Words: Time’s Arrow

Hello, friends, and welcome back to Sciency Words!  Each week, we take a closer look at the definition and etymology of a science or science-related term.  Today’s Sciency Word is:

TIME’S ARROW

Which way is time going?  Prior to the 1890’s, no one would have asked such a silly question.  Time is time.  Everything about time is self-evident.  Why would anyone question it?

But then in 1895, H.G. Wells introduced the concept of time travel to the readers of adventure fiction.  And then in 1915, Albert Einstein started treating time as a variable, rather than a constant, as part of his general theory of relativity.  In his book Time Travel: A History, science historian James Gleick explains:

Millennia had gone by without scientists needing special shorthand like “time’s arrow” to state the obvious—the great thing about time is that it goes on.  Now, however, it was no longer obvious.  Physicists were writing laws of nature in a way that made time directionless, a mere change of sign separating +t from –t.

British astronomer Sir Arthur Eddington gets credit for introducing the “arrow of time” as a conceptual metaphor.  Eddington’s arrow points from the past toward the future.  Unless it doesn’t.  Depending on what sort of physics problem you’re trying to solve (or what sort of Sci-Fi story you’re trying to tell), it may be more convenient to imagine time’s arrow pointing from the future toward the past.

In 1927, in a series of lectures at the University of Edinburgh, and then later in a book titled The Nature of the Physical World, Eddington made three key points about time’s arrow, which I’ll paraphrase as:

  1. Gosh, time’s arrow sure does seem real to us humans.
  2. And common sense reasoning insists that time’s arrow must always point in the same direction.
  3. But when you do the math, you’ll find that none of the laws of physics actually require time’s arrow to exist, except one.

That one exception is the second law of thermodynamics, which tells us that the entropy of a closed thermodynamic system will inevitably increase with the passage of time.  So time’s arrow must always point in the direction of increasing entropy.

Of course a lot of people remain skeptical about time travel.  The Time Machine by H.G. Wells is a fine piece of fiction.  As for general relativity, treating time as a variable (rather than a constant) might help make the math work, but that doesn’t necessarily mean variable time is a real phenomenon.

Still, thanks in larger part to Arthur Eddington and his arrow metaphors, the question “which way is time going?” no longer sounds like total nonsense.

Next time on Planet Pailly: have we discovered a second planet orbiting Proxima Centauri?