Sciency Words: Coronium

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we take a closer look at the definitions and etymologies of scientific terms.  Today on Sciency Words, we’re talking about the word:

CORONIUM

Here on Sciency Words, we usually talk about scientific terms that are relevant and useful in modern science, but sometimes I like to draw attention to scientific terms that didn’t make it.  I think it can be helpful to learn about how and why words drop out of the scientific lexicon.  So today, we’re going to talk about coronium, a chemical element that we now know does not exist.

Definition of coronium: A chemical element that scientists in the late 19th and early 20th Centuries thought existed based on a mysterious green emission line detected in the Sun’s corona.  At least one very prominent scientist (Dmitri Mendeleev) believed coronium to be an element lighter than hydrogen, with chemical properties similar to helium and argon.

Etymology of coronium: In 1869, American astronomers Charles Augustus Young and William Harkness independently detected a green emission line in the Sun’s corona during a solar eclipse.  In 1887, Professor A. Grünwald proposed the name “coronium” for whatever chemical substance caused that green emission line.  Since this unknown substance was first detected in the Sun’s corona, coronium seemed like an obvious name.

The “discovery” of coronium came right on the heels of the discovery of helium, and the story of these discoveries was eerily similar.  Scientists observe a solar eclipse.  A strange, new emission line appears in Sun’s spectrum, as measured using a spectroscope.  This emission line is (or seems to be) the first evidence of a newly discovered chemical element.

Dmitri Mendeleev was initially skeptical about both helium and coronium, because he couldn’t find places for them in his periodic table of the elements.  Toward the end of his life, however, Mendeleev tried to shoehorn these elements, along with several others, into his theories by adding a “group zero” to the periodic table.  Each group zero element is lighter than the group one element it sits next to—for example, argon is lighter than potassium, neon is lighter than sodium, helium is lighter than lithium… and coronium ended up sitting next to hydrogen, indicating that coronium is an element lighter than hydrogen.

Mendeleev was a smart man, but he was wrong about group zero.  After some reshuffling of the periodic table, most of the group zero elements were moved to group eighteen (a.k.a. “the noble gases”), and in the end, it turned out there really was no place for coronium.  No element lighter than hydrogen exists.

So what caused that anomalous green emission line in the Sun’s spectrum?  Turned out it was iron.  In the 1930’s, German and Swedish astronomers Walter Grotian and Bengt Edlén discovered that a form of super-hot, super-ionized iron gives off an emission line at 530.3 nm—an exact match with the 530.3 nm green emission line found in the solar corona.  Without the power of the Sun (or the power of modern laboratory equipment), iron doesn’t get hot enough or ionized enough to reveal that part of its spectrum.  As a result, scientists in the late 1800’s couldn’t have known what that strange, green emission line was.

Coronium is a Sciency Word of the past, from a time when the spectroscope was a relatively new scientific instrument and the periodic table was still a work in progress.  We no longer need to imagine there’s an exotic chemical element found only in the Sun’s corona, not when super-ionized iron explains that green emission line in the Sun’s spectrum just as well.

WANT TO LEARN MORE?

Here’s an interesting article about Dmitri Mendeleev and his mistakes, including his mistakes about coronium and the “group zero” elements.  For anyone involved in science education, this article makes a compelling case about why teaching the history of science is so important, with an emphasis on showing how scientists don’t always get it right on the first try.

I also want to recommend this book, simply titled The Sun.  It is full of cool and useful space facts that I had never read about before anywhere else (including the false discovery of coronium).  The Sun is part of a series called Kosmos, and I highly, highly, highly recommend this series to anyone who loves space.

And lastly, here’s a link to A. Grünwald’s 1887 paper where he first proposed the name “coronium” for a “hitherto unknown corona-substance.”

Sciency Words: Antitail

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we talk about the definitions and etymologies of scientific terms.  In today’s Sciency Words post, we’re talking about the word:

ANTITAIL

Did you see the comet?  Pretty much everyone I know has been asking me that question lately.  Comet C/2022 E3 (ZTF) had a wild ride these last few weeks.  First, she started glowing a lot brighter and a lot greener than expected, leading to some people calling her “the green comet.”  Then, due to some intense solar activity, a gap formed in one of the green comet’s two tails.  Shortly thereafter, almost as if the comet were trying to compensate for the damage to one tail, an apparent third tail became visible to observers here on Earth.  This apparent third tail is what astronomers call an antitail.

Definition of antitail: Comets typically have two tails: a dust tail and an ion tail.  These tails are supposed to point away from the Sun.  They’re caused by the solar wind sweeping gas, dust, and other lightweight material away from the comet and off into space.  An antitail is an apparent third tail pointing toward the Sun.  At least antitails look like they’re pointing toward the Sun, but this is actually an optical illusion.

Etymology of antitail: The prefix “anti-” can mean several things.  In this context, it means “opposite,” because antitails point (or look like they point) in a direction opposite to the direction cometary tails are supposed to point.  Based on my research, I believe this term was first introduced in the late 1950’s, following the appearance of comet Arend-Roland.

Okay, I’m going out on a bit of a limb claiming that the term was introduced in the 1950’s.  I cannot find any sources explicitly stating that, but almost every source I looked at seems to agree that Comet Arend-Roland had the most famous and noteworthy antitail in the history of antitails.  In 1957, Arend-Roland developed a large and protruding “sunward spike.”  In photos (like this one or this one), the comet reminds me a little of a narwhal.

Arend-Roland cannot possibly be the first comet ever observed to have an antitail, but it does seem to be the most spectacular and most widely studied antitail in recorded history.  Crucially, I was unable to find any sources mentioning cometary antitails prior to 1957.  Ergo, I think I’m right that the term was first introduced around that time, in reference to that particular comet.  But I could be wrong, and if anyone knows more about this topic than I do, please do share in the comments below.

Regardless of how much of a first Arend-Roland’s antitail really was to the scientific community at the time, it was not much of a mystery.  Within a matter of months, scientists were able to offer explanations, like this explanation published in Nature:

No extraordinary physical theory appears necessary to account for the growth of the sunward tail […]  The sunward tail must almost certainly have resulted from the concentration of cometary debris over an area in the orbital plane.  Seen at moderate angels to the plane, the material possessed too low a surface brightness to be easily observed, but seen edge-on it presented a concentrated line of considerable intensity.

So several things have to happen in order for us Earth-based observers to see an antitail.  First, a comet needs to shed some debris that’s too big and heavy to be swept off by the solar wind.  This extra debris will accumulate along the comet’s orbital path, rather than billowing off in a direction pointing away from the Sun.  Second, Earth has to be in just the right place at just the right time to see this debris field “edge-on.”  Otherwise, the light reflecting off the debris will be too diffuse for us to see.  And third, this has to happen at a time when the comet’s tails don’t overlap with the debris field (i.e., the debris and the tails have to be pointing in opposite directions, as seen from Earth).  Otherwise, the glow of the tails will obscure the light reflecting off the debris.

Last week, I was lucky enough to see the comet, but I didn’t see her bright green color (she was a hazy grey in my telescope), and I certainly didn’t get a chance to see the antitail.  I’m pretty sure I was a few days too late for that, and besides, there’s too much light pollution where I live to see faint details like that.

Still, I consider it a great joy and privilege that I got to see as much of the comet as I did.  And for all the cool sciency stuff I couldn’t see for myself, I can always turn to my research if I want to learn more.

WANT TO LEARN MORE?

Here’s the 1957 report from Nature that I quoted above, explaining what “must almost certainly” have caused Arend-Roland’s “sunward tail.”

And here’s a more recent article about Arend-Roland, reviewing the comet’s discovery, observation history, and the appearance of his antitail.

Lastly, here’s an article from Live Science about the recent “green comet” and her antitail.

Science Can’t Explain Everything

Hello, friends!

As you know, I love science.  I’m a little obsessed.  But there are people who get annoyed or even offended by my obsession with science, and every once in a while one of these people will remind me, sternly, that science can’t explain everything.  And you know what?  I generally agree with that sentiment.  But then people start declaring that science will never know this specific thing or that specific thing, and I immediately think of a certain 19th Century French philosopher named Auguste Comte.

Comte was not some scientifically illiterate buffoon.  He wasn’t one of those 19th Century evolution deniers, or one of those latter-day opponents to the heliocentric model of the Solar System.  In fact, Comte is regarded today as the very first philosopher of science, in the modern sense of that term, and he gets credit for coining the word “sociology” and for laying the philosophical foundation for that entire branch of science.  There’s also a wonderful quote from Comte about the mutual dependence of scientific theory and scientific observation.  Basically, you can’t formulate a theory without observation, but you also can’t make an observation without the guidance of a theory.

But that is not the Comte quote I think of whenever somebody starts lecturing me about the things science will never know.  It’s this quote about the stars: “[…] we shall never be able by any means to study their chemical composition or their mineralogical structure…”  Comte also declared that: “I regard any notion concerning the true mean temperature of the various stars as forever denied to us.”

Comte wrote this in 1835, and if you can put yourself into an 1835 mindset you can see where he was coming from.  There’s no such thing as rocketry.  We don’t even have airplanes yet.  And even if you could fly up to a star (or the Sun), how would you measure its temperature?  What kind of thermometer would you use?  And how would you go about collecting stellar material, in order to determine the star’s chemical composition?

According to Comte—a highly intelligent and very pro-science person—this sort of knowledge was utterly impossible to obtain.  And yet only a few decades later, thanks to the invention of the spectroscope, scientists started obtaining some of this unobtainable knowledge.  For those of you who don’t know, spectroscopes separate light into a spectrum.  Some parts of the spectrum may appear brighter or darker than you might otherwise expect, depending on which chemical substances emitted or absorbed the light before it reached the spectroscope.  And so by comparing the spectral lines of chemicals we have here on Earth to the spectrum obtained from the light of a star, you can determine the chemical composition of that star.

You can also measure a star’s temperature thanks to a concept known as black body radiation.  Basically, black body radiation refers to the fact that things glow as they got hotter.  If no other light sources are involved, then the color of a glowing object will be directly related to that object’s temperature.  Ergo, if you know what color a star is, then you can work out a pretty accurate estimate of what temperature that star must be.

Auguste Comte didn’t foresee any of this.  It is certainly true that science does not know everything, and there are surely things that science will never know.  But if you think you know, specifically, what science can never know, I question that.  Someday, some new invention (like the spectroscope) or some breakthrough discovery (like black body radiation) may turn an utterly unknowable thing into a matter of trivial measurements and calculations.

Maybe the one thing science truly can never know is what science’s own limitations are.

WANT TO LEARN MORE?

Here’s a very brief post about Auguste Comte, what he said about stars, and how epically wrong he was with that one prediction.

Also, here’s a short article about some genuine limitations that science has, like aesthetics, moral judgements, etc.

Are We Alone in the Universe?

Hello, friends!

I have only recently returned to regular blogging, and in several recent posts I’ve alluded to the fact that I’m planning to take my Sci-Fi writing in a new creative direction.  A lot of things are changing for me right now.  A lot of the things I’m doing (or trying to do) are new.  With that in mind, I feel like this is a good time to restate some of my views and beliefs about science and the universe, starting with my views and beliefs about extraterrestrial life.

When people ask “Do you think we’re alone in the universe?” I get slightly annoyed by that question.  It’s too big a topic to reduce to a simple yes or no question.  In Humanity’s search for extraterrestrial life, there are really three kinds of life we might find out there:

Microbial Life: Almost as soon as Earth existed, terrestrial microorganisms existed, too.  Microbes developed so swiftly and so easily on this planet that the same thing must have happened elsewhere.  For this reason, I believe extraterrestrial microorganisms are plentiful across the cosmos.

Multicellular Life: Complex multicellular organisms—fish, plants, bugs, etc—exist on Earth due to a happy accident.  About 2.4 billion years ago, some of Earth’s microbes started burping up oxygen.  To those microbes, oxygen was a waste product, but that waste product could also be used in biochemical reactions to create energy.  Lots of energy.  Enough energy to make complex multicellular life possible.  If multicellular life requires this sort of happy accident in order to exist, then I suspect multicellular life must be rare across the universe.

Intelligent Life: I’m going to define intelligence as the ability of a species to make and use tools, to communicate complex ideas, and to generally improve upon its knowledge and technology over time.  As far as we can tell, life like that only evolved one time on our planet.  Given the vastness of the entire universe, I think intelligent life must exist elsewhere, but I also think it must be extremely rare.

Some time around 1950, nuclear physicist Enrico Fermi famously asked “Where is everybody?” in reference to alien life.  As Fermi saw it, advanced alien civilizations should be out there, and their activities in space should be obvious to us.  And yet when we look out into the universe, we see nothing.  This apparent contradiction—aliens should be everywhere, and yet they seem to be nowhere—is today known as the Fermi Paradox.

So I guess my answer to questions like “Where is everybody?” or “Are we alone in the universe?” depends on what kind of alien life we’re talking about.  If we’re talking about alien microorganisms, I think they’re plentiful, and I think it’s only a matter of time before we find evidence of alien microbes on Mars or on one of the icy moons of the outer Solar System.  If we’re talking about multicellular life, that sort of life is rare.  And intelligent life must be rarer still—so rare, in fact, that our nearest intelligent neighbors may be hundreds, thousands, or even millions of lightyears away.

But these are just my opinions.  My opinions about this topic have changed over time, and as I keep learning, my opinions and expectations will, no doubt, change again.

So, friends, what are your opinions and expectations concerning extraterrestrial life?  Do you think I’m on the right track, or is there something I’ve missed that you think I should learn more about?

NASA’s DART Mission: Rest in Peace

Hello, friends!

As you probably know, NASA’s DART spacecraft deliberately rammed itself into an asteroid on Monday.  This was a test.  It was only a test.  The asteroid in question (named Dimorphos) was never a threat to us.  Someday, though, another asteroid may come along… an asteroid that does threaten us… an asteroid that could end life as we know it.  The DART Mission was intended to test out ability to defend ourselves, should a large and genuinely threatening asteroid ever show up on our doorstep.

I spent Monday night watching NASA TV’s livestream of the DART Mission.  Those final images from DART’s navigational camera were amazing!  I never really thought about what it would look like to crash into the surface of an asteroid.  Now I know exactly what that would look like.

Anyway, today I thought I’d share a few things that I learned—things that I did not know before—while watching NASA’s livestream, as well as the press conference that was held after the mission was over.

The Space Force: So I knew DART launched almost a year ago, but I didn’t know it had launched from Vandenberg Space Force Base (I also didn’t know Vandenberg Air Force Base had been renamed).  I still think the whole Space Force thing is cringy, but at least the Space Force did help do something to actually defend our planet.  So that’s cool!
DART’s Solar Panels: In addition to testing our planetary defense capabilities, the DART spacecraft also tested a few new space technologies.  Most notably, DART was using a new, experimental solar panel design.  DART launched with its solar panels rolled up into cylinders, then the solar panels unrolled once the spacecraft was in space.  The new design apparently weighs a lot less than traditional solar panels, and anything we can do to lower the weight of a spacecraft helps make spaceflight less expensive.
Dimorphos’s Shape: This one really surprised me.  Apparently nobody knew what Dimorphos looked like until those last few minutes before impact.  The most high-res images we had were still not high-res enough to reveal the asteroid’s shape or any useful details about its appearance.  As a result, DART had to be programmed with some sort of machine learning algorithm to help it figure out what it was supposed to be aiming for.

While the DART Mission was a success, it’ll still be a while before we know exactly how effective it was at moving the orbit of an asteroid.  Telescopes up in space and down here on the ground will continue monitoring Dimorphos as the dust settles (both figuratively and literally).  Still, as a citizen of Planet Earth, I do feel a little bit safer living on this planet.  I mean, we still have a lot of challenges we need to overcome, but that asteroid problem?  I think we’ve got that one covered now.

So did you watch NASA’s livestream on Monday?  Did you learn anything new, either from the livestream or from other news sources covering the DART Mission?

P.S.: If you missed the livestream, click here to watch it on YouTube.  Or you can click here to watch the press conference that was held afterward.

NASA’s DART Mission: Brace for Impact!!!

Hello, friends!

We are only a few days away from what is, in my opinion, the #1 most important space story of the year.  No, I’m not talking about the launch of Artemis 1.  And no, this has nothing to do with the Webb Telescope either.  I’m talking about NASA’s DART Mission.

For eons now, asteroids have been zipping and zooming past our planet.  Every once in a while, one of those asteroids will hit our planet, causing anywhere from minor to major to global mass extinction event levels of damage.  But on Monday, September 27, 2022, humanity will perform our first ever experiment to see if it’s possible to smack an incoming asteroid away.

The asteroid in question is named Dimorphos.  Dimorphos is not actually a threat to us, but if we’re going to perform an experiment like this, Dimorphos is a rather convenient target for target practice.  That’s because Dimorphos is not just an asteroid; it’s also a moon (or should I call it a moonlet?) orbiting a larger asteroid named Didymos.

When the DART spacecraft crashes into Dimorphos, the force of the impact will change Dimorphos’s orbit around Didymos.  It should be fairly easy for astronomers to measure this change, and thus it should be fairly easy to judge how effective DART was—and just how effective DART would have been against an asteroid that was actually threatening us.

Oh, and just in case anyone’s concerned that DART might accidentally knock Dimorphos out of its original orbit entirely and send it hurtling our way, thus ironically causing the very disaster this mission was meant to help prevent—don’t worry.  Didymos’s gravitational hold on Dimorphos is strong.  No matter what happens on this mission, Didymos is not going to let her little moonlet go (another reason why Dimorphos was selected as the target for this experiment).

So on Monday, September 27, 2022, there will be a head-on collision between an asteroid/moonlet and a NASA spacecraft.

An Italian-built spacecraft named LICIACube will be positioned nearby to observe the experiment.  A multitude of Earth-based telescopes will also be watching.  The European Space Agency also plans to send a follow-up mission (named Hera) in 2026, to check up on Dimorphos after its post-impact orbit has had some time to settle down.

Life on Earth has never been able to defend itself from incoming asteroids before.  Life on Earth has never had the ability to even try, until now [citation needed].  Obviously asteroids are not the only threat to life on our planet.  Obviously this is not the only challenge we need to overcome.  But the DART Mission is a huge first step.  A true giant leap.  No, DART probably won’t get the same kind of love and attention as Webb or Artemis 1, but still I’d say this is the #1 most important space story of the year.  This may be one of the most important science experiments in all of Earth history.

WANT TO LEARN MORE?

P.S.: I said life on Earth has never before had the ability to defend itself from incoming asteroids.  Technically speaking, we cannot be 100% sure that’s true.  Click here to read my post on the Silurian Hypothesis.

October Is Europa Month Here on Planet Pailly!

Hello, friends!  Let’s talk about aliens!

If we want to find alien life, where should we look?  Well, if money were no object, I’d say we should look anywhere and everywhere we can.  Phosphorous on Venus?  Could be aliens.  Let’s check it out.  Melty zones beneath the surface of Pluto?  Let’s check that out too.  Ariel?  Dione?  Ceres?  Let’s check them all for signs of alien life!

But money is an object.  We simply don’t have the resources to explore all of these places.  Space exploration is expensive.  Space exploration will always be expensive so long as we’re stuck using rocket-based propulsion.  The Tsiolkovsky rocket equation makes it so.

Whenever you’re working within a restrictive budget, you need to think strategically.  With that in mind, astrobiologists (scientists who specialize in the search for alien organisms) have focused their efforts on four worlds within our Solar System.  Their names are Mars, Europa (moon of Jupiter), Enceladus (moon of Saturn), and Titan (another moon of Saturn).

This month, I’m going to take you on a deep dive (no pun intended) into Europa.  In my opinion, of the four worlds I just listed, Europa is the #1 most likely place for alien life to be found.  I don’t mean to denigrate Mars, Enceladus, or Titan.  There are good reasons to think we might find life in those places, too.  But there are also good reasons to think we might not.

  • Mars: Life may have existed on Mars once, long ago.  But then the Martian oceans dried up.  We’re unlikely to find anything there now except, perhaps, fossils.
  • Enceladus: Enceladus’s age is disputed.  She may be only a few hundred million years old, in which case she may be too young to have developed life.
  • Titan: If you want to believe in life on Titan, you have to get a little imaginative about how Titanian biochemistry would work.

Europa doesn’t have those issues.  Unlike Mars, Europa has an ocean of liquid water right now, in modern times.  Unlike Enceladus, Europa’s age is not disputed; she’s definitely old enough for life.  And unlike Titan, Europa doesn’t require us to get imaginative about biochemistry.  The same carbon-based/water-based biochemistry we use here on Earth would work just as well for the Europans.

There are still good reasons to search for aliens on Mars, Enceladus, and Titan.  Finding fossils on Mars would be super exciting!  Enceladus’s age is, as I said, in dispute, with some estimates suggesting she’s very young, but others telling us she’s plenty old.  And while life on Titan would be very different than life on Earth, scientists don’t have to imagine too hard to find plausible ways for Titanian biochemistry to work.

But if I were a gambler, I’d put my money on Europa.  And if I were in charge of NASA’s budget, I’d invest heavily in Europa research and Europa missions.  Europa just seems like the safest bet to me, if we want to find alien life. And in the coming month, I plan to go into more detail about why I feel that way.

WANT TO LEARN MORE?

If you’re interested in learning more about the Tsiolkovsky Rocket Equation, you may enjoy this article from NASA called “The Tyranny of the Rocket Equation” (because NASA is the American space agency, and anything Americans don’t like is tyranny).

As for astrobiology, I highly recommend All These Worlds Are Yours: The Scientific Search for Alien Life, by Jon Willis.  Willis frames the search for alien life just as I did in this post: alien life could be anywhere, but you only have a limited budget to use to find it.  So how would you spend that money?

Oops! I Learned Something Wrong About Io

Hello, friends!

As you may remember from a previous post, Io is my favorite moon in the Solar System.  He may not be the prettiest moon, and he certainly isn’t the most habitable.  I, for one, would never, ever, ever want to live there.  You see, Io is the most volcanically active object in the Solar System.  He is constantly—and I do mean constantly!—spewing up this mixture of molten hot sulfur compounds.  It gets everywhere, and it is totally gross.

But it’s also super fascinating—fascinating enough that Io ended up becoming my #1 favorite moon in the whole Solar System.  I’ve read a lot about Io over the years.  I thought I understood Io pretty well.  But I was wrong.  One of the facts in my personal collection of Io-related facts was based on a fundamental misunderstanding of how Io’s volcanism works.  Let me explain:

Io is caught in this gravitational tug of war between his planet (Jupiter) and his fellow Galilean moons (Europa, Ganymede, and Callisto).  Jupiter’s gravity pulls one way; the moons pull another; Io is caught in the middle, feeling understandably queasy.  I always thought this gravitational tug-of-war was directly responsible for Io’s volcanic activity.  But it’s not.  Recently, while reading a book called Alien Oceans: The Search for Life in the Depths of Space, I realized that I had some unlearning to do.

The gravitational tug-of-war has forced Io into a highly elliptical (non-circular) orbit.  This means there are times when Io gets very close to Jupiter, and times when Io is much farther away.  When Io’s orbit brings him close to Jupiter, Jupiter’s gravity compresses Io’s crust.  And when Io moves father away, his crust gets a chance to relax.  This cycle of compressing and relaxing—of squeezing and unsqueezing—causes Io’s interior to get hot, which, in turn, keeps Io’s volcanoes erupting.

This squeezing and unsqueezing action wouldn’t happen if not for Io’s highly elliptical orbit, so the gravitational tug-of-war with Jupiter’s other moons is still partially responsible for Io’s volcanism.  But the tug-of-war is not the direct cause of Io’s volcanism, as I always assumed it to be.

I wanted to share all this with you today because some of you may have had the same misunderstanding about Io that I did.  Hopefully I’ve cleared that up for you!  But also, I think this is a good example of how the process of lifelong learning works.  If you’re a lifelong learner (as I am), you may have favorite topics that you think you know an awful lot about.  But there’s always more to learn, and sometimes learning more means unlearning a few things that you thought you already knew.

WANT TO LEARN MORE?

If you’re an Io fanatic like me, I highly recommend Alien Oceans: The Search for Life in the Depths of Space by Kevin Peter Hand.  The book is mainly about Europa and the other icy/watery moons of the outer Solar System, but there’s a surprising amount of information in there about Io, too.  Apparently, if it turns out that Europa really is home to alien life (as many suspect her to be), then Io may have played a crucial role in making that alien life possible.

Abyssal Gigantism on Europa?

Hello, friends!

So the first time I heard about the subsurface ocean on Europa (one of Jupiter’s moons), my imagination ran wild.  Or should I say it swam wild?  I imagined all sorts of wonderful and terrifying sea creatures: krakens with lots of horrible tentacles and teeth; crab-like creatures scuttling around on the ocean floor; and perhaps even extraterrestrial merfolk with a rich and complex civilization of their own.

As I’ve learned more about space and science, though, I’ve scaled back my expectations for what we might find on Europa.  Or on Enceladus, or Dione, or Titan, or Ariel, or Pluto… there’s a growing list of planetoids in the outer Solar System where subsurface oceans of liquid water are suspected and/or confirmed to exist.

Any or all of those worlds might support alien life.  But not giant sea monsters.  When astrobiologists talk about alien life, they’re usually talking about microorganisms.  For Europa, rather than civilized merfolk and tentacle-flailing leviathans, we should imagine prokaryotic microbes clustered around hydrothermal vents, feeding on sulfur compounds and other mineral nutrients.  If we ever find evidence that these Europan microbes exists, it will come in the form of a weird amino acid residue, or something like that.

That’s the most exciting discovery we can hope for, realistically speaking.  Unless…

On Monday, I introduced you to the term “abyssal gigantism,” also known as “deep-sea gigantism.”  Abyssal gigantism refers to the tendency of deep-sea organisms to grow larger (sometimes much larger) than their shallow-water cousins.  As an example, see the giant squid.  Or if you really want to give yourself nightmares, look up the Japanese spider crab.

The more I read about abyssal gigantism, the more my thoughts turn to Europa (and Enceladus, and all the rest).  The environment beneath Europa’s icy crust shouldn’t be so different from the deepest parts of Earth’s oceans.  So shouldn’t what happens in the deepest parts of Earth’s oceans also happen on Europa?

According to this article from Hakai Magazine, yes.  Yes, it should.  The same evolutionary pressures that cause abyssal gigantism here on Earth should cause a similar kind of gigantism on Europa.  In fact, it would be strange if that didn’t happen.  One marine biologist is quoted in that article saying: “You would have to come up with a rationale why [abyssal gigantism on Europa] couldn’t happen, and I can’t do that.”

Before you or I let our imaginations swim wild, I should note that that article from Hakai Magazine was the one and only source I could find on this specific combination of topics: abyssal gigantism and life on Europa.  So maybe take all of this with a grain of salt (preferably a grain of Europan sea salt).  But… well, I’ll put it to you this way: if someone were to write a story about a NASA submarine being attacked by sea monsters, that story would seem plausible to me.

Sciency Words: FarFarOut

Hello, friends!  Welcome to Sciency Words, a special series here on Planet Pailly where we take a closer look at new and interesting scientific terms so we can expand our scientific vocabularies together!  Today’s Sciency Word is:

FARFAROUT

You know, I recently spent a couple days trapped at home due to a snow storm. Don’t worry, I don’t live in Texas—I wasn’t trapped in that snow storm.  Anyway, after reading a little about Dr. Scott Sheppard, I feel as though I seriously misused those snowed-in days.

Dr. Sheppard is one of the key players in the ongoing search for Planet X, also known as Planet Nine or (as I like to call it) New Pluto.  Together with fellow astronomer Chad Trejillo, Sheppard has discovered more than sixty objects of various sizes out beyond the orbits of Neptune and Pluto.

Among those sixty-plus objects Sheppard and Trejillo discovered is a possible dwarf planet nicknamed “FarOut” (official designation 2018 VG18).  FarOut is—or rather was, very briefly—the most distant natural object known to exist in our Solar System.  Hence the nickname.

But in early 2019, Sheppard was reviewing his data and happened to notice another object even farther out than FarOut.  As Scientific American tells the story, this happened while Sheppard was “snowed in during a blizzard.”  (I spent my recent snowed-in days watching cartoons on my phone.)  The new object Sheppard found in his data has the official designation 2018 AG37, but Sheppard nicknamed it “FarFarOut,” for obvious reasons.

According to this article from Carnegie Science, FarFarOut has a highly eccentric (non-circular) orbit, with an orbital period of approximately one thousand years!  Seriously, a thousand years!!!  A portion of that highly eccentric orbit is actually not that far away at all; at its closest approach to the Sun, FarFarOut’s orbital path actually crosses within the orbit of Neptune.

I do have to take issue with some of the news articles and social media posts I’ve seen about FarFarOut.  Strictly speaking, FarFarOut is not the most distant known object in the Solar System.  We should probably call it the most distant natural object, or the most distant non-articifical object, that we currently know about, because there is one known object that’s even fartherer out than FarFarOut.