My Favorite Planet: Venus

October 31, 2018

I’m thinking of doing a few of these kinds of posts, if people are into it: my favorite planet, my favorite moon, my favorite asteroid… that sort of thing. Today I’d like to tell you a little about Venus, my favorite planet in the Solar System and also the best chemistry teacher I’ve ever had.

Venus has been my favorite planet for a long time now.  I used to say to people, “It’s because Venus has the most personality.  It’s the personality of a serial killer, but still… so much personality!”

It’s true that Venus is excessively, unreasonably, incomprehensibly hostile toward life.  I mean, all the planets are dangerous (even Earth is a dangerous place in its own ways), but if you ever go to Venus, Venus will try to kill you at least a dozen different ways before you touch the ground.  And when your crushed and crispy remains do reach the ground, Venus will try to kill you again in at least a dozen more ways.

No other planet is so creative and so gleefully enthusiastic about murder.  As a science fiction writer, one of my goals in life is to set a novel on Venus or a Venus-like planet, because no other setting makes for such a deadly antagonist.

But upon further reflection, I think there’s a better reason why Venus holds such a special place in my heart.  I’ve done a lot of space-related research over the years.  It’s all part of my ongoing quest to become a better science fiction writer.  Venus was the first planet to really challenge me intellectually.

Why is Venus so deadly?  In many ways, Venus is Earth’s twin.  The two planets are about the same size, they have almost the same surface gravity, and their chemical compositions are similar. Venus is slightly closer to the Sun, but it’s still within our Solar System’s habitable zone.  So what gives?

It was hard work getting the kind of answers I was looking for.  Venus forced me to learn a lot of new things.  In particular, I had to learn more about chemistry, a subject that I despised in school and had really hoped I could avoid.  But in struggling to understand Venus’s sulfur chemistry, and later its carbon chemistry, I was rewarded not only with a deeper understanding of one planet but of how planets in general are put together, and how they each end up with their own distinct “personalities.”

Picking a favorite anything is obviously a subjective thing. For me, studying Venus was an eye-opening experience in ways I never would have expected.  For that, I’m forever grateful to the planet Venus, and Venus will always be my favorite planet.

So what’s your favorite planet?  If you say “Earth, because I live there,” I’m going to be a little disappointed.  But whatever your favorite planet is, and whatever your reasons for that, please share in the comments below!

NASA’s Next Flagship Mission

July 19, 2017

Let’s imagine you’re NASA. You have two big flagship-class missions coming up: one to search for life on Mars (launcing in 2020) and another to search for life on Europa (launching in 2022). These flagship missions are big, expensive projects, so Congress only lets you do one or two per decade.

After 2022, the next flagship mission probably won’t launch until the late 2020’s or early 2030’s, but still… now is the time for you to start thinking about it. So after Mars and Europa, where do you want to go next? Here are a few ideas currently floating around:

  • Orbiting Enceladus: If you want to keep looking for life in the Solar System, Enceladus (a moon of Saturn) is a good pick. It’s got an ocean of liquid water beneath it surface, and thanks to the geysers in the southern hemisphere, Enceladus is rather conveniently spraying samples into space for your orbiter to collect.
  • Splash Down on Titan: If there’s life on Titan (another moon of Saturn), it’ll be very different from life we’re familiar with here on Earth. But the organic chemicals are there in abundance, and it would be interesting to splash down in one of Titan’s lakes of liquid methane. If we built a submersible probe, we could even go see if anything’s swimming around in the methane-y depths.
  • Another Mars Rover: Yes, we have multiple orbiters and rovers exploring Mars already, but some of that equipment is getting pretty old and will need to be replaced soon. If we’re serious about sending humans to Mars, it’s important to keep the current Mars program going so we know what we’re getting ourselves into.
  • Landing on Venus: Given the high temperature and pressure on Venus, this is a mission that won’t last long—a few days tops—but Venus is surprisingly similar to Earth in many ways. Comparing and contrasting the two planets taught us how important Earth’s ozone layer is and just what can happen if a global greenhouse effect get’s out of control. Who knows what else Venus might teach us about our home?
  • Orbiting Uranus: This was high on NASA’s list of priorities at the beginning of the 2010’s, and it’s expected to rank highly again in the 2020’s. We know next to nothing about Uranus or Neptune, the ice giants of our Solar System. Given how many ice giants we’ve discovered orbiting other stars, it would be nice if we could learn more about the ones in our backyard.
  • Orbiting Neptune: Uranus is significantly closer to Earth than Neptune, but there’s an upcoming planetary alignment in the 2030’s that could make Neptune a less expensive, more fuel-efficient choice. As an added bonus, we’d also get to visit Triton, a Pluto-like object that Neptune sort of kidnapped and made into a moon.

If it were up to me, I know which one of these missions I’d pick. But today we’re imagining that you are NASA. Realistically Congress will only agree to pay for one or two of these planetary science missions in the coming decade. So what would be your first and second choices?

Molecular Monday: Why Chemistry?

May 1, 2017

The first Monday of the month is Molecular Monday here on Planet Pailly!

We just wrapped up this year’s A to Z Challenge, and I ended up writing a lot about chemistry. A lot more than I expected. You’d think I must really love chemistry.

But I don’t.

I really don’t.

For a long time, I tried to avoid the subject completely due to bad memories from high school chemistry. My professor was extremely generous in giving me a just-barely-passing grade.

So when I made the commitment to include more science in my science fiction, I figured I could get by with just the “fun” sciences like physics and astronomy. Then in 2015, I did my yearlong Mission to the Solar System, and the planet Venus forced me to start learning this chemistry stuff.

As you can see in this totally legit actual Hubble image, Venus has some very special chemical activity going on.

There’s simply no way to understand what’s happening on Venus without getting into the weird sulfur chemistry of the Venusian atmosphere. But once you do make sense of that sulfur chemistry, a strange new world is suddenly open to you: a world of both heavenly beauty and acid rain hellfire death.

Since my experiences with Venus, I’ve come to realize that understanding chemistry, even at a basic level, makes my work as a science blogger and science fiction writer so much easier.

  • Is there life on Mars or Europa? What about life in other star systems, or silicon-based life? If alien life is out there, it will be the product of chemistry.
  • What about humans traveling to other worlds? What would be safe for us to eat or breathe? Chemistry can help answer that too.
  • Venus isn’t the only world defined by chemistry. Earth has been shaped in large part by the chemistry of oxygen and water; the gas giants by ammonia and methane; and then there’s a true oddball like Titan with its tholen chemistry.
  • And how am I going to get my rocket ship off the ground? By mixing rocket fuel. In other words, by doing chemistry.

Chemistry is by no means the most fundamental science, but for the kinds of things I write, it is the most applicable science. So even though I don’t enjoy the subject, I’ve forced myself to stick with it.

And if I’m being perfectly honest, in those aha-moments when complex chemical reactions suddenly makes sense to me, I may quietly murmur to myself, “Okay, chemistry is kind of fun.”

Sciency Words: H.A.V.O.C.

October 28, 2016

Sciency Words BIO copy

Today’s post is part of a special series here on Planet Pailly called Sciency Words. Each week, we take a closer look at an interesting science or science-related term to help us expand our scientific vocabularies together. Today’s term is:


Given a choice between colonizing Venus or Mars, I might actually choose Venus. Yes, surface conditions on Venus are hellish instant death. Like, literally hellish. It’s even got the sulfur. But a Venusian colony would not be built on the planet’s surface.

Atmospheric conditions at an altitude of about 50 km are actually quite pleasant. The temperature and pressure are about the same as on Earth. So is the gravity. And you wouldn’t need hydrogen or helium to keep your floating cities aloft; on Venus, oxygen is lighter than air.

Life in a Venusian floating city, drifting around right above the Venusian clouds, sounds almost—dare I say it?—heavenly. There’d be plenty of sunlight (solar panels would soak up plenty of energy), and Venus would provide some natural protection from solar and cosmic radiation (at least, more protection than you’d get on Mars).

And thanks to the weird chemical mix in Venus’s atmosphere, you’d be able to collect almost all the natural resources you’d need. Well, aside from water (Mars has got Venus beat there).

I know this sounds crazy, but the more you read about it, the more Venus colonization makes sense. Venus may not get the kind of attention (or funding) that Mars gets, but NASA and other space agencies do take this seriously. NASA has even given the idea a name: the High Altitude Venus Operational Concept, or H.A.V.O.C.


So I’m ready to sign up for a mission to colonize Venus. Who’s with me?

Sciency Words: Photolysis

July 30, 2016

Sciency Words PHYS copy

Things have been a bit hectic lately, so welcome to a rare Saturday edition of Sciency Words.

Every Friday (normally), we take a closer look at an interesting science or science-related term to help us all expand our scientific vocabularies together. Today’s term is:


Last year, when I did my special Mission to the Solar System, I fell in love with one planet in particular: Venus. I guess I’ve always had a soft spot for sciency girls, and Venus is about as sciency as they get. She’s really, really into chemistry.

Jy30 Venus Does Chemistry

Photolysis (also known as photo-dissociation) is one of Venus’s favorite chemistry tools. Photolysis occurs when high-energy photons ram into chemical bonds, causing those bonds to break.

By high-energy photons, of course, I mean light. Specifically ultraviolet light, X-rays, and gamma rays. On Venus, UV rays from the Sun cause the photolysis of sulfur compounds, contributing to the sulfur cycle that causes Venus’s infamous sulfuric acid rain.

Jy30 Photolysis on Venus

The same process breaks apart oxygen molecules in Earth’s stratosphere, allowing them to recombine as ozone, thus generating the ozone layer. Photolysis is also probably responsible for the chemical changes on Jupiter that make the Great Red Spot look red (or sometimes other colors).

And speaking as an artist, photolysis is something I have to guard against. Paints are just a mix of chemicals, and the photolytic break down of those chemicals can, over time, cause paints and other pigments to fade or change color.

Photolysis by any other name…

The term photolysis is sometimes used as a blanket term for similar kinds of chemical bond breaking. For example, very little sunlight reaches the surface of Venus, but sulfur compounds still vigorously break apart and recombine due to the intense heat.

Some academic sources I’ve read still call that photolysis, though I prefer the term thermal dissociation. Calling a chemical reaction that occurs in a near pitch-black environment “photolysis” feels awkward.

Just my opinion.

Photolysis here, photolysis there, photolysis everywhere…

When I first learned about photolysis, I didn’t fully appreciate its significance. I understood only that it (and also thermal dissociation) played key roles in Venus’s extra special chemistry projects.

Then I encountered the word again while researching other planets. And then it popped up in an art textbook I was reading. I’ve gradually come to understand that it is a fundamental concept in science, or at least in chemistry.

Next week, I’ll be revisiting Saturn’s largest and orangest moon: Titan. I have a sneaking suspicion that we will once again see photolysis in action.


Photolysis of Sulphuric Acid as the Source of Sulphur Oxides in the Mesosphere of Venus from Nature Geoscience.

The Sulfur Cycle on Venus: New Insights from Venus Express from the 2009 Lunar and Planetary Science Conference.