In Memory of Cassini

September 20, 2017

Last week, NASA’s Cassini Mission came to an end when the spacecraft crashed into the planet Saturn. This was, of course, a planned event: a way for the mission to end in a blaze of glory, collect a little extra data about Saturn’s atmosphere, and also protect Saturn’s potentially habitable moons (Titan, Enceladus, and possibly also Dione) from microorganisms that may have hitched a ride from Earth aboard the spacecraft.

Cassini’s last few days were an oddly emotional time, at least for me. Somehow knowing that the end was coming, that everything was proceeding according to schedule, made it a little harder to bear. When the words “data downlink ended” started appearing in my Twitter feed, I got a little misty eyes and had to walk away from the computer for a while.

This despite the fact that I never got to know Cassini all that well. I never really followed the Cassini Mission closely (especially compared the way I follow Juno). Looking back through my old posts, it seems Cassini only ever appeared on this blog twice. Once for that time it spotted sunlight glinting off the surface of Titan’s methane lakes…

… and once more for the time it used precise measurements of Enceladus’s librations to determine that Enceladus does indeed have an ocean of water beneath its crust.

So today I thought I’d turn the floor over to several of the moons of Saturn and also Saturn herself. They’re the ones who got to know Cassini well. Not me. It’s right that they get the chance to give Cassini’s eulogy.

The Titan Mission That Could’ve Been

July 31, 2017

This is a follow-up to my recent post about NASA’s next flagship-class mission. There seemed to be a lot of interest in the comments about a possible mission to Titan and/or Enceladus, Saturn’s most famous moons.

The competition for flagship mission funding can get pretty intense. The Titan Saturn System Mission (or T.S.S.M.) was a strong contender last time around, as was a proposed mission to Europa, the most watery moon of Jupiter.

According to Titan Unveiled by Ralph Lorenz and Jacqueline Mitton, things got a little nasty when the Europa team started calling Titan “Callisto with weather,” the implication being that Titan was geologically boring.

Callisto, by the way, is a large by often overlooked moon of Jupiter.

Ultimately Team Europa won. NASA deemed their proposal to be closer to launch-readiness. Now after a few years delay due to a certain global financial meltdown, the Europa Clipper Mission appears to be on track for a 2022 launch date (fingers crossed).

As excited as I am for Europa Clipper, the mission to Titan would’ve been really cool too. It actually would have included three—possibly four—spacecraft.

  • A lake-lander to explore Titan’s liquid methane lakes.
  • A hot air balloon to explore the organic chemical fog surrounding Titan.
  • A Titan orbiter to observe Titan from space and also relay data from the lander and balloon back to Earth.
  • And a possible Enceladus orbiter, built by the European Space Agency, which would have tagged along for the ride to Saturn.

It’s a shame T.S.S.M. didn’t get the green light from NASA. Just think: we would’ve had so many cool things going on at once in the Saturn System, enough to almost rival the activity we’ve got going on on Mars!

But now once Europa Clipper is safely on its way (again, fingers crossed), Team Titan will have another shot at getting their mission off the ground.

NASA’s Next Flagship Mission

July 19, 2017

Let’s imagine you’re NASA. You have two big flagship-class missions coming up: one to search for life on Mars (launcing in 2020) and another to search for life on Europa (launching in 2022). These flagship missions are big, expensive projects, so Congress only lets you do one or two per decade.

After 2022, the next flagship mission probably won’t launch until the late 2020’s or early 2030’s, but still… now is the time for you to start thinking about it. So after Mars and Europa, where do you want to go next? Here are a few ideas currently floating around:

  • Orbiting Enceladus: If you want to keep looking for life in the Solar System, Enceladus (a moon of Saturn) is a good pick. It’s got an ocean of liquid water beneath it surface, and thanks to the geysers in the southern hemisphere, Enceladus is rather conveniently spraying samples into space for your orbiter to collect.
  • Splash Down on Titan: If there’s life on Titan (another moon of Saturn), it’ll be very different from life we’re familiar with here on Earth. But the organic chemicals are there in abundance, and it would be interesting to splash down in one of Titan’s lakes of liquid methane. If we built a submersible probe, we could even go see if anything’s swimming around in the methane-y depths.
  • Another Mars Rover: Yes, we have multiple orbiters and rovers exploring Mars already, but some of that equipment is getting pretty old and will need to be replaced soon. If we’re serious about sending humans to Mars, it’s important to keep the current Mars program going so we know what we’re getting ourselves into.
  • Landing on Venus: Given the high temperature and pressure on Venus, this is a mission that won’t last long—a few days tops—but Venus is surprisingly similar to Earth in many ways. Comparing and contrasting the two planets taught us how important Earth’s ozone layer is and just what can happen if a global greenhouse effect get’s out of control. Who knows what else Venus might teach us about our home?
  • Orbiting Uranus: This was high on NASA’s list of priorities at the beginning of the 2010’s, and it’s expected to rank highly again in the 2020’s. We know next to nothing about Uranus or Neptune, the ice giants of our Solar System. Given how many ice giants we’ve discovered orbiting other stars, it would be nice if we could learn more about the ones in our backyard.
  • Orbiting Neptune: Uranus is significantly closer to Earth than Neptune, but there’s an upcoming planetary alignment in the 2030’s that could make Neptune a less expensive, more fuel-efficient choice. As an added bonus, we’d also get to visit Triton, a Pluto-like object that Neptune sort of kidnapped and made into a moon.

If it were up to me, I know which one of these missions I’d pick. But today we’re imagining that you are NASA. Realistically Congress will only agree to pay for one or two of these planetary science missions in the coming decade. So what would be your first and second choices?

Sciency Words: Frost Line

December 23, 2016

Welcome to a very special holiday edition of Sciency Words! Today’s science or science-related term is:


When a new star is forming, it’s typically surrounded by a swirling cloud of dust and gas called an accretion disk. Heat radiating from the baby star plus heat trapped in the disk itself vaporizes water and other volatile chemicals, which are then swept off into space by the solar wind.

But as you move farther away from the star, the temperature of the accretion disk tends to drop. Eventually, you reach a point where it’s cold enough for water to remain in its solid ice form. This is known as the frost line (or snow line, or ice line, or frost boundary).

Of course not all volatiles freeze or vaporize at the same temperature. When necessary, science writers will specify which frost line (or lines) they’re talking about. For example, a distinction might be made between the water frost line versus the nitrogen frost line versus the methane frost line, etc. But in general, if you see the term frost line by itself without any specifiers, I think you can safely assume it’s the water frost line.

Even though our Sun’s accretion disk is long gone, the frost line still loosely marks the boundary between the warmth of the inner Solar System and the coldness of the outer Solar System. The line is smack-dab in the middle of the asteroid belt, and it’s been observed that main belt asteroids tend to be rockier or icier depending on which side of the line they’re on.

It was easier for giant planets like Jupiter and Saturn to form beyond the frost line, since they had so much more solid matter to work with. And icy objects like Europa, Titan, and Pluto—places so cold that water is basically a kind of rock—only exist as they do because they formed beyond the frost line. This has led to the old saying:


Okay, maybe that’s not an old saying, but I really wanted this to be a holiday-themed post.

All These Worlds Are Yours: A Book Review

October 11, 2016

In his book All These Worlds Are Yours: The Scientific Search for Alien Life, author Jon Willis gives you $4 billion. How many authors do that? Okay, it’s imaginary money, and you’re only allowed to spend it on astrobiological research. But still… $4 billion, just for reading a book!

If you’re new to the subject of astrobiology, All These Worlds is an excellent introduction. It covers all the astrobiological hotspots of the Solar System and beyond, and unlike most books on this subject, it doesn’t gloss over the issue of money.

There are so many exciting possibilities, so many opportunities to try to find alien life. But realistically, you can only afford one or maybe two missions on your $4 billion budget. So you’ll have to pick and choose. You’ll have to make some educated guesses about where to look.

Do you want to gamble everything on Mars, or would you rather spend your money on Titan or Europa? Or do you want to build a space telescope and go hunting for exoplanets? Or donate all your money to SETI? Willis lays out the pros and cons of all your best options.

My only complaint about this book is that Enceladus (a moon of Saturn) didn’t get its own chapter. Instead, there’s a chapter on Europa and Enceladus, which was really a chapter about Europa with a few pages on Enceladus at the end.


I agree, Enceladus. On the other hand, Enceladus is sort of like Europa’s mini-me. So while I disagree with the decision to lump the two together, I do understand it.

In summary, I’d highly recommend this book to anyone interested in space exploration, and especially to those who are new or relatively knew to the subject of astrobiology. Minimal prior scientific knowledge is required, although some basic familiarity with the planets of the Solar System would help.

P.S.: How would you spend your $4 billion? I’d spend mine on a mission to Europa, paying special attention to the weird reddish-brown material found in Europa’s lineae and maculae.

Who’s Eating Titan’s Acetylene?

October 3, 2016

The first Monday of the month is Molecular Monday, the day I write about my least favorite subject from school: chemistry.

Molecular Mondays Header

I’d planned to write something about ammonia today. Ammonia might (might!) serve as a good substitute for water in some alien biochemistry.

But then I was reminded of something. Something important. Something I’m kicking myself for not covering before. So once again, let’s turn our attention to Saturn’s largest moon: Titan.


Making Acetylene on Titan

As we’ve discussed previously, methane gas and other chemicals break apart in Titan’s upper atmosphere. This allows carbon, hydrogen, nitrogen, and possibly other elements to recombine in new ways. The result is a mishmash of organic chemicals collectively refered to as tholins.

Tholins tend to be sticky, yucky, and orange. They slowly fall to Titan’s surface, covering the moon with sticky, yucky, orange sludge. One chemical in the tholin mix should be acetylene (C2H2). In fact, acetylene is a fairly simple molecule compared to the rest of the tholin gunk on Titan, so we should find lots of it.

But we don’t. We’ve detected little to no acetylene accumulation on Titan’s surface. Maybe this means there’s something wrong with our detection techniques. Or maybe some as-yet-unidentified chemical process breaks up acetylene molecules as they fall through Titan’s atmosphere.

Or maybe (maybe!) something eats the acetylene as soon as it touches the ground.

Eating Titan’s Acetylene

I first read about this a few years ago in Astrobiology: A Very Short Introduction. It came up again, in greater detail, in the book I’m currently reading: All These Worlds Are Yours. The case of Titan’s missing acetylene is a hot topic for astrobiologists.

There’s a rather simple chemical reaction that might (might!) explain what’s going on.

C2H2 + 3H2 –> 2CH4 + energy

That’s one acetylene molecule reacting with three hydrogen molecules to produce two methane molecules and some energy. The kind of energy that weird Titanian microorganisms could use to survive (maybe).

In my opinion, it still seems unlikely that life could have evolved on the surface of Titan, if only because liquid methane (Titan’s “water”) is not a good solvent for amino acids. But unlikely is not the same as impossible.

It’s worth noting at this point that a few other weird things are happening on Titan. Hydrogen gas seems to mysteriously disappear near Titan’s surface, and no one has adequately explained how Titan replenishes its atmospheric methane (all the methane should have turned into tholins by now).

If Titan does have an acetylene-eating, hydrogen-breathing microbe that expels methane as a waste product, that would conveniently solve three mysteries at once. I can’t help but think, though, that this might be a little too convenient to be true.

Molecular Monday: Liquid Water vs. Liquid Methane

September 5, 2016

Molecular Mondays Header

Welcome to Molecular Monday! On the first Monday of the month, we take a closer look at the atoms and molecules that make up our physical universe. Today, we’re comparing some of the properties of:


So you’re a moon or other planetary body, and you want to get some biochemical action going on. First, you need some organic substances. Titan has set a great example with the tholin haze that forms spontaneously in its atmosphere.

Next, you need a liquid to dissolve that organic material in, in the hopes that the organic material will recombine as amino acids, peptide chains, and ultimately DNA. But which liquid should you choose? Liquid water (as seen on Earth) or liquid methane (as seen on Titan)?

Pick Water!

Water (H2O) makes an excellent solvent for our purposes because it’s a polar molecule. There are two big reasons for water’s polarity.

  • First, oxygen has an extremely high electronegativity, meaning oxygen atoms like to yank electrons away from other atoms. Within a water molecule, oxygen’s electron-hogging tendencies cause it to become negatively charged, while the two hydrogen atoms become positive.
  • Second, you know how water molecules have that Mickey Mouse shape? Because of that shape, with the two hydrogen atoms bent toward each other, the positive charges accumulate on one side of the molecule and the negative charge accumulates on the other.

Thus, water is a polar molecule, and it’ll go around interacting with other polar molecules, like tholins or amino acids.

Don’t Pick Methane

Unlike water, methane (CH4) is a nonpolar molecule. Why?

  • Carbon is slightly more electronegative than hydrogen, but not by much, so the atoms in a methane molecule share electrons almost equally. This minimizes the electric charges that might build up inside the molecule.
  • Methane molecules are symmetrical, with the carbon atom in the center and the four hydrogens evenly spaced around in, like the four corners of an equilateral pyramid.

Sp05 Methane vs Water

Any electrical charges in a methane molecule balance out, due to the molecule’s symmetry. And those charges are fairly weak anyway, due to the similar electronegativities of carbon and hydrogen.

I won’t be so bold as to say life can’t develop in a liquid methane environment, but the idea does seem a bit farfetched in light of the chemistry. Polar molecules like tholins just aren’t likely to dissolve in a methane lake, like the lakes found on Titan.

On the other hand, the universe keeps surprising us, and the giant lake monster I recently met on Titan might dispute my assessment of Titan’s biochemical potential.

P.S.: Titan’s lakes also contain liquid ethane, but that doesn’t really change anything. Ethane is also nonpolar.