Sciency Words: Telerobotics

November 10, 2017

Today’s post is part of a special series here on Planet Pailly called Sciency Words. Each week, we take a closer look at an interesting science or science-related term to help us expand our scientific vocabularies together. Today’s term is:

TELEROBOTICS

This is a pretty easy one, I think. Telerobotics refers to controlling robots from a distance, usually a great distance. This is in contrast to robots that function autonomously or machines that require direct human control.

The word comes from the familiar Greek root tele-, meaning “far away,” and of course the word robot, which originally comes from Czech and means something like “forced labor.”

A wide variety of fields use telerobotics, but for the purposes of this blog we’re most interested in its use in space exploration. At this point most if not all spacecraft are telerobotic in nature. They receive instructions from mission control on Earth, carry out their instructions, and then transmit their status back to Earth so that mission control can decide what to make the spacecraft or space vehicle do next.

The problem, of course, is that this back and forth communication is restricted by the speed of light. In the case of the Mars rovers, this means that even performing the simplest tasks can take hours and hours. It’s very frustrating, especially for the rovers.

This is one of the biggest reasons Buzz Aldrin and others say we should send astronauts to Phobos (one of Mars’s moons) before sending anyone to Mars itself. From a small Phobos base, astronauts could telerobotically control the rovers in real time. The speed-of-light delay would be negligible.

The rovers could cover a lot more ground that way, dramatically speeding up our exploration of Mars. Also, when the time comes, the rovers could be used to quickly prepare a landing site and assemble habitat structures in advance of the first human colonists arriving on Mars.


The Monolith of Phobos

November 9, 2017

On Tuesday, I landed on the surface of Phobos, the largest and innermost moon of Mars. Today, I’m doing a bit of sightseeing. Yes, there are sights to see on this rocky, little moon. Or at least, there is one sight worth seeing: the Monolith of Phobos.

I’m kind of surprised that I hadn’t heard about this before: a mysterious, boxy-looking object estimated to be about 90 meters wide jutting out of the surface of Phobos. Apparently it’s something Buzz Aldrin talks about a lot.

Aldrin mentioned it in an interview on C-SPAN, saying that this is the kind of mystery that could really get the public interested in a mission to Phobos. Aldrin also wrote about the monolith in greater detail in his book Mission to Mars: My Vision for Space Exploration (which is where I first heard about it).

So I’m going to go check this monolith out. I mean, it’s probably just a big rock. I bet it doesn’t even look so monolithic when you see it up close. It certainly was not put there by aliens (as many conspiracy theorists insist that it was) or that it’s anything like the monoliths from 2001: A Space Odyssey.

Except… what is that noise? It’s like some kind of eerie music….


Welcome to Phobos (Watch Your Step)

November 7, 2017

So I know I’m supposed to be blogging about my totally for real trip to Mars, but I actually haven’t landed on Mars yet. Actually, I’ve read a lot of expert opinions suggesting that any long term mission to Mars should really start with a mission to Phobos, Mars’s largest and innermost moon.

It’s an idea that Buzz Aldrin advocates for in his book about Mars, and it’s something that’s spelled out in a little more detail in this NASA technical report. Basically, the delta-v required to travel from the surface of Earth to Phobos is less than the total delta-v to travel from Earth all the way down to the surface of Mars.

That means less fuel, which means lower costs, and once we’re there Phobos can be used as a sort of vanguard outpost to help prepare for the full scale exploration and colonization of Mars.

Unfortunately for me, landing on Phobos and taking my first steps on this very, very tiny world—well, it didn’t go the way I expected it too.

Don’t worry. I made it back to the ground. Eventually.

You see Phobos is more like an asteroid than what we’d typically think of as a moon. If fact Phobos may actually be an asteroid that Mars kidnapped from the asteroid belt. Anyway, the point is Phobos is small. Very small. And so it does not have a whole lot of surface gravity. If I did my math correctly, we’re talking about less than 0.1% the surface gravity of Earth.

So in order to land on Phobos and stay on Phobos, I recommend bringing grappling hooks or some sort of tethering system, or maybe something like the harpoon gun the Rosetta Mission tried (unsuccessfully) to use to latch onto comet 67P.

As for walking around on Phobos’s surface, I’d say tread lightly. If you put too much force into your footsteps, you’ll have several long, long minutes to think about your mistake as you drift slowly back down to the ground.