The Titan Mission That Could’ve Been

July 31, 2017

This is a follow-up to my recent post about NASA’s next flagship-class mission. There seemed to be a lot of interest in the comments about a possible mission to Titan and/or Enceladus, Saturn’s most famous moons.

The competition for flagship mission funding can get pretty intense. The Titan Saturn System Mission (or T.S.S.M.) was a strong contender last time around, as was a proposed mission to Europa, the most watery moon of Jupiter.

According to Titan Unveiled by Ralph Lorenz and Jacqueline Mitton, things got a little nasty when the Europa team started calling Titan “Callisto with weather,” the implication being that Titan was geologically boring.

Callisto, by the way, is a large by often overlooked moon of Jupiter.

Ultimately Team Europa won. NASA deemed their proposal to be closer to launch-readiness. Now after a few years delay due to a certain global financial meltdown, the Europa Clipper Mission appears to be on track for a 2022 launch date (fingers crossed).

As excited as I am for Europa Clipper, the mission to Titan would’ve been really cool too. It actually would have included three—possibly four—spacecraft.

  • A lake-lander to explore Titan’s liquid methane lakes.
  • A hot air balloon to explore the organic chemical fog surrounding Titan.
  • A Titan orbiter to observe Titan from space and also relay data from the lander and balloon back to Earth.
  • And a possible Enceladus orbiter, built by the European Space Agency, which would have tagged along for the ride to Saturn.

It’s a shame T.S.S.M. didn’t get the green light from NASA. Just think: we would’ve had so many cool things going on at once in the Saturn System, enough to almost rival the activity we’ve got going on on Mars!

But now once Europa Clipper is safely on its way (again, fingers crossed), Team Titan will have another shot at getting their mission off the ground.

Sciency Words: Frost Line

December 23, 2016

Welcome to a very special holiday edition of Sciency Words! Today’s science or science-related term is:


When a new star is forming, it’s typically surrounded by a swirling cloud of dust and gas called an accretion disk. Heat radiating from the baby star plus heat trapped in the disk itself vaporizes water and other volatile chemicals, which are then swept off into space by the solar wind.

But as you move farther away from the star, the temperature of the accretion disk tends to drop. Eventually, you reach a point where it’s cold enough for water to remain in its solid ice form. This is known as the frost line (or snow line, or ice line, or frost boundary).

Of course not all volatiles freeze or vaporize at the same temperature. When necessary, science writers will specify which frost line (or lines) they’re talking about. For example, a distinction might be made between the water frost line versus the nitrogen frost line versus the methane frost line, etc. But in general, if you see the term frost line by itself without any specifiers, I think you can safely assume it’s the water frost line.

Even though our Sun’s accretion disk is long gone, the frost line still loosely marks the boundary between the warmth of the inner Solar System and the coldness of the outer Solar System. The line is smack-dab in the middle of the asteroid belt, and it’s been observed that main belt asteroids tend to be rockier or icier depending on which side of the line they’re on.

It was easier for giant planets like Jupiter and Saturn to form beyond the frost line, since they had so much more solid matter to work with. And icy objects like Europa, Titan, and Pluto—places so cold that water is basically a kind of rock—only exist as they do because they formed beyond the frost line. This has led to the old saying:


Okay, maybe that’s not an old saying, but I really wanted this to be a holiday-themed post.