Sciency Words: Plasma Torus

Today’s post is part of a special series here on Planet Pailly called Sciency Words. Each week, we take a closer look at an interesting science or science-related term to help us expand our scientific vocabularies together. Today’s term is:

PLASMA TORUS

Saturn may have the most beautiful rings in the Solar System, but Jupiter’s got the most impressive plasma torus. Torus is the proper mathematical term for a donut shape, and plasma refers to ionized gas. Put the two words together and you get a giant, donut-shaped radiation death zone wrapped around a planet’s equator.

Jupiter’s plasma torus is faint, almost invisible; but if we take the totally legit Hubble image below and enhance the sulfur emission spectra, you’ll see what we’re talking about.

Ever since the discovery of Jupiter’s decametric radio emissions, astronomers have known there must be a relationship between Jupiter’s magnetic field and its moons. Well, I say moons plural, but it’s really only one moon we’re talking about: Io.

It wasn’t until the Voyager mission that we figured out why Io has so much influence over Jupiter’s magnetic field. In 1979, the Voyager space probes discovered active sulfur volcanoes on Io. They also detected ionized sulfur and oxygen swirling through space conspicuously near Io’s orbital path.

It seems that due to Io’s low surface gravity, Io’s volcanoes can easily spew a noxious mix of sulfur dioxide and other sulfur compounds up into space. Jupiter’s intense and rapidly rotating magnetic field acts as a sort of naturally occurring cyclotron, bombarding these sulfur compounds with radiation, breaking them apart into ionized (electrically charged) particles and accelerating those particles round and round the planet.

The result is a giant, spinning, donut-shaped cloud of ionized gas. We’re talking about a lot of radiation here—seriously, keep your distance from the Io plasma torus! We’re also talking about a lot of electrically charged, magnetically accelerated particles moving through a planetary magnetic field.

One source I read for today’s post described Io as “the insignificant-looking tail that wags the biggest dog in the neighborhood.” Jupiter has by far the largest, strongest magnetic field of any planet in the Solar System, but thanks to this plasma torus, it’s Io—tiny, little Io—that has the real power in the Jovian system.

Next week, we’ll go take a look at Jupiter’s auroras. They’re rather different from the auroras we have here on Earth, and SPOILER ALERT: Io has a lot of control over them.

7 thoughts on “Sciency Words: Plasma Torus

  1. Interesting read! My 4 year old already into planets and their moons and names of all of them. I wouldnt have even heard of Lo if not for him. I sure will be bookmarking your site to show to him in the future when he can read better.

    Liked by 1 person

    1. Glad to hear it! I’d heard of Io before. I think I remember something about it from when I was a kid. But it’s only recently that I’ve started to appreciate just how weird of a moon it is.

      Like

Leave a reply to J.S. Pailly Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.